版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市教院附中中考数学模拟预测题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2) B.a(x﹣3)(x+4) C.a(x2﹣4x﹣12) D.a(x+6)(x﹣2)2.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A. B. C. D.3.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,154.对于函数y=,下列说法正确的是()A.y是x的反比例函数 B.它的图象过原点C.它的图象不经过第三象限 D.y随x的增大而减小5.如图,以O为圆心的圆与直线交于A、B两点,若△OAB恰为等边三角形,则弧AB的长度为()A. B.π C.π D.π6.下列图形中,属于中心对称图形的是()A. B.C. D.7.如图,已知点A,B分别是反比例函数y=(x<0),y=(x>0)的图象上的点,且∠AOB=90°,tan∠BAO=,则k的值为()A.2 B.﹣2 C.4 D.﹣48.在△ABC中,AB=AC=13,BC=24,则tanB等于()A. B. C. D.9.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣110.若关于,的二元一次方程组的解也是二元一次方程的解,则的值为A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图,点A,B在反比例函数(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.12.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2=_____°.13.关于x的一元二次方程有实数根,则a的取值范围是__________.14.如果关于x的方程x2+2ax﹣b2+2=0有两个相等的实数根,且常数a与b互为倒数,那么a+b=_____.15.一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3……在x轴上,已知正方形A1B1C1D1的顶点C1的坐标是(﹣,0),∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形A2018B2018C2018D2018的顶点D2018纵坐标是_____.16.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是_____.17.分解因式:2m2-8=_______________.三、解答题(共7小题,满分69分)18.(10分)如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在一象限,点P(t,0)是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,连接OD,PD,得△OPD。(1)当t=时,求DP的长(2)在点P运动过程中,依照条件所形成的△OPD面积为S①当t>0时,求S与t之间的函数关系式②当t≤0时,要使s=,请直接写出所有符合条件的点P的坐标.19.(5分)计算:(﹣2)2+20180﹣20.(8分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B求证:△ADF∽△DEC;若AB=8,AD=6,AF=4,求AE的长.21.(10分)阅读下面材料:已知:如图,在正方形ABCD中,边AB=a1.按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小.操作步骤作法由操作步骤推断(仅选取部分结论)第一步在第一个正方形ABCD的对角线AC上截取AE=a1,再作EF⊥AC于点E,EF与边BC交于点F,记CE=a2(i)△EAF≌△BAF(判定依据是①);(ii)△CEF是等腰直角三角形;(iii)用含a1的式子表示a2为②:第二步以CE为边构造第二个正方形CEFG;第三步在第二个正方形的对角线CF上截取FH=a2,再作IH⊥CF于点H,IH与边CE交于点I,记CH=a3:(iv)用只含a1的式子表示a3为③:第四步以CH为边构造第三个正方形CHIJ这个过程可以不断进行下去.若第n个正方形的边长为an,用只含a1的式子表示an为④请解决以下问题:(1)完成表格中的填空:①;②;③;④;(2)根据以上第三步、第四步的作法画出第三个正方形CHIJ(不要求尺规作图).22.(10分)某商场柜台销售每台进价分别为160元、120元的、两种型号的电器,下表是近两周的销售情况:销售时段销售数量销售收入种型号种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入—进货成本)(1)求、两种型号的电器的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电器共50台,求种型号的电器最多能采购多少台?(3)在(2)中商场用不多于7500元采购这两种型号的电器共50台的条件下,商场销售完这50台电器能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.23.(12分)已知关于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为非负整数,且该方程的根都是无理数,求m的值.24.(14分)“中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可.解:ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).故答案为a(x﹣6)(x+2).点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.2、B【解析】
由题意可知,当时,;当时,;当时,.∵时,;时,.∴结合函数解析式,可知选项B正确.【点睛】考点:1.动点问题的函数图象;2.三角形的面积.3、D【解析】
将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.4、C【解析】
直接利用反比例函数的性质结合图象分布得出答案.【详解】对于函数y=,y是x2的反比例函数,故选项A错误;它的图象不经过原点,故选项B错误;它的图象分布在第一、二象限,不经过第三象限,故选项C正确;第一象限,y随x的增大而减小,第二象限,y随x的增大而增大,故选C.【点睛】此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键.5、C【解析】过点作,∵,∴,,∴为等腰直角三角形,,,∵为等边三角形,∴,∴.∴.故选C.6、B【解析】
A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.【详解】A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;B、将此图形绕中心点旋转180度与原图重合,所以这个图形是中心对称图形;C、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;D、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.故选B.【点睛】本题考查了轴对称与中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、D【解析】
首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A,B分别在反比例函数y=(x<0),y=(x>0)的图象上,即可得S△OBD=,S△AOC=|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k的值【详解】解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,
∴∠ACO=∠ODB=90°,
∴∠OBD+∠BOD=90°,
∵∠AOB=90°,
∴∠BOD+∠AOC=90°,
∴∠OBD=∠AOC,
∴△OBD∽△AOC,
又∵∠AOB=90°,tan∠BAO=,
∴=,
∴=,即,
解得k=±4,
又∵k<0,
∴k=-4,
故选:D.【点睛】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法。8、B【解析】如图,等腰△ABC中,AB=AC=13,BC=24,过A作AD⊥BC于D,则BD=12,在Rt△ABD中,AB=13,BD=12,则,AD=,故tanB=.故选B.【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.9、B【解析】
∵函数y=-2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.10、B【解析】
将k看做已知数求出用k表示的x与y,代入2x+3y=6中计算即可得到k的值.【详解】解:,①②得:,即,将代入①得:,即,将,代入得:,解得:.故选:.【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值.二、填空题(共7小题,每小题3分,满分21分)11、【解析】试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示.∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,∴S△ABC=2S△BCE,S△ABD=2S△ADE,∴S△ABC=2S△ABD,且△ABC和△ABD的高均为BF,∴AC=2BD,∴OD=2OC.∵CD=k,∴点A的坐标为(,3),点B的坐标为(-,-),∴AC=3,BD=,∴AB=2AC=6,AF=AC+BD=,∴CD=k=.【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k值是解题的关键.12、40【解析】如图,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,故答案为:40.13、a≤1且a≠0【解析】∵关于x的一元二次方程有实数根,∴,解得:,∴a的取值范围为:且.点睛:解本题时,需注意两点:(1)这是一道关于“x”的一元二次方程,因此;(2)这道一元二次方程有实数根,因此;这个条件缺一不可,尤其是第一个条件解题时很容易忽略.14、±1.【解析】
根据根的判别式求出△=0,求出a1+b1=1,根据完全平方公式求出即可.【详解】解:∵关于x的方程x1+1ax-b1+1=0有两个相等的实数根,∴△=(1a)1-4×1×(-b1+1)=0,即a1+b1=1,∵常数a与b互为倒数,∴ab=1,∴(a+b)1=a1+b1+1ab=1+3×1=4,∴a+b=±1,故答案为±1.【点睛】本题考查了根的判别式和解高次方程,能得出等式a1+b1=1和ab=1是解此题的关键.15、×()2【解析】
利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【详解】解:∵∠B1C1O=60°,C1O=,∴B1C1=1,∠D1C1E1=30°,∵sin∠D1C1E1=,∴D1E1=,∵B1C1∥B2C2∥B3C3∥…∴60°=∠B1C1O=∠B2C2O=∠B3C3O=…∴B2C2=,B3C3=.故正方形AnBnCnDn的边长=()n-1.∴B2018C2018=()2.∴D2018E2018=×()2,∴D的纵坐标为×()2,故答案为×()2.【点睛】此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键16、小李.【解析】
解:根据图中的信息找出波动性大的即可:根据图中的信息可知,小李的成绩波动性大,则这两人中的新手是小李.故答案为:小李.17、2(m+2)(m-2)【解析】
先提取公因式2,再对余下的多项式利用平方差公式继续分解因式.【详解】2m2-8,=2(m2-4),=2(m+2)(m-2)【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法,十字相乘等方法分解.三、解答题(共7小题,满分69分)18、(1)DP=;(2)①;②.【解析】
(1)先判断出△ADP是等边三角形,进而得出DP=AP,即可得出结论;
(2)①先求出GH=2,进而求出DG,再得出DH,即可得出结论;
②分两种情况,利用三角形的面积建立方程求解即可得出结论.【详解】解:(1)∵A(0,4),
∴OA=4,
∵P(t,0),
∴OP=t,
∵△ABD是由△AOP旋转得到,
∴△ABD≌△AOP,
∴AP=AD,∠DAB=∠PAO,
∴∠DAP=∠BAO=60°,
∴△ADP是等边三角形,
∴DP=AP,
∵,
∴,
∴;(2)①当t>0时,如图1,BD=OP=t,
过点B,D分别作x轴的垂线,垂足于F,H,过点B作x轴的平行线,分别交y轴于点E,交DH于点G,
∵△OAB为等边三角形,BE⊥y轴,
∴∠ABP=30°,AP=OP=2,
∵∠ABD=90°,
∴∠DBG=60°,
∴DG=BD•sin60°=,
∵GH=OE=2,
∴,
∴;②当t≤0时,分两种情况:
∵点D在x轴上时,如图2在Rt△ABD中,,
(1)当时,如图3,BD=OP=-t,,∴,
∴,
∴或,
∴或,
(2)当时,如图4,BD=OP=-t,,
∴,
∴∴或(舍)∴.【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,旋转的性质,三角形的面积公式以及解直角三角形,正确作出辅助线是解决本题的关键.19、﹣1【解析】分析:首先计算乘方、零次幂和开平方,然后再计算加减即可.详解:原式=4+1-6=-1.点睛:此题主要考查了实数的运算,关键是掌握乘方的意义、零次幂计算公式和二次根式的性质.20、(1)见解析(2)6【解析】
(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC.(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在在Rt△ADE中,利用勾股定理求出线段AE的长度.【详解】解:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC∴∠C+∠B=110°,∠ADF=∠DEC∵∠AFD+∠AFE=110°,∠AFE=∠B,∴∠AFD=∠C在△ADF与△DEC中,∵∠AFD=∠C,∠ADF=∠DEC,∴△ADF∽△DEC(2)∵四边形ABCD是平行四边形,∴CD=AB=1.由(1)知△ADF∽△DEC,∴,∴在Rt△ADE中,由勾股定理得:21、(1)①斜边和一条直角边分别相等的两个直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)见解析.【解析】
(1)①由题意可知在Rt△EAF和Rt△BAF中,AE=AB,AF=AF,所以Rt△EAF≌Rt△BAF;②由题意得AB=AE=a1,AC=a1,则CE=a2=a1﹣a1=(﹣1)a1;③同上可知CF=CE=(-1)a1,FH=EF=a2,则CH=a3=CF﹣FH=(-1)2a1;④同理可得an=(-1)n-1a1;(2)根据题意画图即可.【详解】解:(1)①斜边和一条直角边分别相等的两个直角三角形全等;理由是:如图1,在Rt△EAF和Rt△BAF中,∵,∴Rt△EAF≌Rt△BAF(HL);②∵四边形ABCD是正方形,∴AB=BC=a1,∠ABC=90°,∴AC=a1,∵AE=AB=a1,∴CE=a2=a1﹣a1=(﹣1)a1;③∵四边形CEFG是正方形,∴△CEF是等腰直角三角形,∴CF=CE=(-1)a1,∵FH=EF=a2,∴CH=a3=CF﹣FH=(-1)a1﹣(-1)a1=(-1)2a1;④同理可得:an=(-1)n-1a1;故答案为①斜边和一条直角边分别相等的两个直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)所画正方形CHIJ见右图.22、(1)A型电器销售单价为200元,B型电器销售单价150元;(2)最多能采购37台;(3)方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.【解析】
(1)设A、B两种型号电器的销售单价分别为x元、y元,根据3台A型号4台B型号的电器收入1200元,5台A型号6台B型号的电器收入1900元,列方程组求解;(2)设采购A种型号电器a台,则采购B种型号电器(50−a)台,根据金额不多余7500元,列不等式求解;(3)根据A型号的电器的进价和售价,B型号的电器的进价和售价,再根据一件的利润乘以总的件数等于总利润列出不等式,再进行求解即可得出答案.【详解】解:(1)设A型电器销售单价为x元,B型电器销售单价y元,则,解得:,答:A型电器销售单价为200元,B型电器销售单价150元;(2)设A型电器采购a台,则16
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院专用药师聘用合同范本
- 出俱乐部车位出租协议
- 金融行业精英人才聘用协议
- 养殖场物流服务租赁合同
- 渔业生产设备使用条例
- 五个合伙人之间协议
- 太阳能发电项目授权委托书样本
- 职业技能实验教室租赁合同模板
- 法律服务招标合同管理准则
- 项目部供应商管理流程
- 2024年时事政治热点题库200道含完整答案(必刷)
- 舞蹈疗法在减少压力和焦虑中的作用
- 女性妇科保健知识讲座
- 《电力系统治安反恐防范要求 第3部分:水力发电企业》
- 部编版语文四年级下册第二单元大单元教学设计核心素养目标
- 2024年小学教师听课、评课制度
- 精品解析:河北省衡水市衡水中学2023-2024学年高一上学期期末数学试题(解析版)
- 2023年《铁道概论》考试复习题库附答案(含各题型)
- (电焊工)劳务分包合同
- 陕西省西安市西咸新区2023-2024学年七年级上学期1月期末历史试题
- 北师大版数学三年级下册全册教案教学设计及教学反思
评论
0/150
提交评论