广西来宾市部分中学中考猜题数学试卷及答案解析_第1页
广西来宾市部分中学中考猜题数学试卷及答案解析_第2页
广西来宾市部分中学中考猜题数学试卷及答案解析_第3页
广西来宾市部分中学中考猜题数学试卷及答案解析_第4页
广西来宾市部分中学中考猜题数学试卷及答案解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西来宾市部分中学中考猜题数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.估计介于()A.0与1之间 B.1与2之间 C.2与3之间 D.3与4之间2.如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()A. B. C. D.3.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80° B.左转80° C.右转100° D.左转100°4.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-25.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16C.q≤4 D.q≥46.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6

B.7C.11D.127.如图,矩形ABCD内接于⊙O,点P是上一点,连接PB、PC,若AD=2AB,则cos∠BPC的值为()A. B. C. D.8.在同一平面直角坐标系中,函数y=x+k与(k为常数,k≠0)的图象大致是()A. B.C. D.9.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,则tan∠BCD的值为()A. B. C. D.10.若关于x的不等式组只有5个整数解,则a的取值范围()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.反比例函数的图象经过点和,则______.12.如图,在△ABC中,∠ACB=90°,AC=BC=3,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=2,则sin∠BFD的值为_____.13.二次函数y=(x﹣2m)2+1,当m<x<m+1时,y随x的增大而减小,则m的取值范围是_____.14.设[x)表示大于x的最小整数,如[3)=4,[−1.2)=−1,则下列结论中正确的是______.(填写所有正确结论的序号)①[0)=0;②[x)−x的最小值是0;③[x)−x的最大值是0;④存在实数x,使[x)−x=0.5成立.15.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,则∠ADB′等于_____.16.如图,在平面直角坐标系中,矩形OACB的顶点O是坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.若E为边OA上的一个动点,当△CDE的周长最小时,则点E的坐标____________.17.分式有意义时,x的取值范围是_____.三、解答题(共7小题,满分69分)18.(10分)我市某中学决定在八年级阳光体育“大课间”活动中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)将两个统计图补充完整;(3)若调查到喜欢“立定跳远”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.19.(5分)一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是多少千米/时?20.(8分)某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下:收集数据从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下:八年级7886748175768770759075798170748086698377九年级9373888172819483778380817081737882807040整理、描述数据将成绩按如下分段整理、描述这两组样本数据:成绩(x)40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100八年级人数0011171九年级人数1007102(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如表所示:年级平均数中位数众数方差八年级78.377.57533.6九年级7880.5a52.1(1)表格中a的值为______;请你估计该校九年级体质健康优秀的学生人数为多少?根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由.(请从两个不同的角度说明推断的合理性)21.(10分)已知,抛物线的顶点为,它与轴交于点,(点在点左侧).()求点、点的坐标;()将这个抛物线的图象沿轴翻折,得到一个新抛物线,这个新抛物线与直线交于点.①求证:点是这个新抛物线与直线的唯一交点;②将新抛物线位于轴上方的部分记为,将图象以每秒个单位的速度向右平移,同时也将直线以每秒个单位的速度向上平移,记运动时间为,请直接写出图象与直线有公共点时运动时间的范围.22.(10分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,求证:AF=DC;若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.23.(12分)如图所示:△ABC是等腰三角形,∠ABC=90°.(1)尺规作图:作线段AB的垂直平分线l,垂足为H.(保留作图痕迹,不写作法);(2)垂直平分线l交AC于点D,求证:AB=2DH.24.(14分)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元;根据市场需求,店老板决定购进这两种品牌化妆品共50套,且进货价钱不超过4000元,应如何选择进货方案,才能使卖出全部化妆品后获得最大利润,最大利润是多少?

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

解:∵,∴,即∴估计在2~3之间故选C.【点睛】本题考查估计无理数的大小.2、B【解析】

先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.【详解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,∴sin∠BED=sin∠CDF=.故选B.【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.3、A【解析】

60°+20°=80°.由北偏西20°转向北偏东60°,需要向右转.故选A.4、A【解析】试题分析:根据函数图象右移减、左移加,上移加、下移减,可得答案.解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是y=(x﹣1)2+2,故选A.考点:二次函数图象与几何变换.5、A【解析】∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选A.6、C【解析】

根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【详解】∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=1.故选C.【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.7、A【解析】

连接BD,根据圆周角定理可得cos∠BDC=cos∠BPC,又BD为直径,则∠BCD=90°,设DC为x,则BC为2x,根据勾股定理可得BD=x,再根据cos∠BDC===,即可得出结论.【详解】连接BD,∵四边形ABCD为矩形,∴BD过圆心O,∵∠BDC=∠BPC(圆周角定理)∴cos∠BDC=cos∠BPC∵BD为直径,∴∠BCD=90°,∵=,∴设DC为x,则BC为2x,∴BD===x,∴cos∠BDC===,∵cos∠BDC=cos∠BPC,∴cos∠BPC=.故答案选A.【点睛】本题考查了圆周角定理与勾股定理,解题的关键是熟练的掌握圆周角定理与勾股定理的应用.8、B【解析】

选项A中,由一次函数y=x+k的图象知k<0,由反比例函数y=的图象知k>0,矛盾,所以选项A错误;选项B中,由一次函数y=x+k的图象知k>0,由反比例函数y=的图象知k>0,正确,所以选项B正确;由一次函数y=x+k的图象知,函数图象从左到右上升,所以选项C、D错误.故选B.9、D【解析】

先求得∠A=∠BCD,然后根据锐角三角函数的概念求解即可.【详解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA==,故选D.【点睛】本题考查解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.10、A【解析】

分别解两个不等式得到得x<20和x>3-2a,由于不等式组只有5个整数解,则不等式组的解集为3-2a<x<20,且整数解为15、16、17、18、19,得到14≤3-2a<15,然后再解关于a的不等式组即可.【详解】解①得x<20

解②得x>3-2a,

∵不等式组只有5个整数解,

∴不等式组的解集为3-2a<x<20,

∴14≤3-2a<15,故选:A【点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a<15是解此题的关键.二、填空题(共7小题,每小题3分,满分21分)11、-1【解析】

先把点(1,6)代入反比例函数y=,求出k的值,进而可得出反比例函数的解析式,再把点(m,-3)代入即可得出m的值.【详解】解:∵反比例函数y=的图象经过点(1,6),∴6=,解得k=6,∴反比例函数的解析式为y=.∵点(m,-3)在此函数图象上上,∴-3=,解得m=-1.故答案为-1.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12、【解析】分析:过点D作DGAB于点G.根据折叠性质,可得AE=DE=2,AF=DF,CE=1,在Rt△DCE中,由勾股定理求得,所以DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,由锐角三角函数求得,;设AF=DF=x,则FG=,在Rt△DFG中,根据勾股定理得方程=,解得,从而求得.的值详解:如图所示,过点D作DGAB于点G.根据折叠性质,可知△AEF△DEF,∴AE=DE=2,AF=DF,CE=AC-AE=1,在Rt△DCE中,由勾股定理得,∴DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,,;设AF=DF=x,得FG=AB-AF-GB=,在Rt△DFG中,,即=,解得,∴==.故答案为.点睛:主要考查了翻折变换的性质、勾股定理、锐角三件函数的定义;解题的关键是灵活运用折叠的性质、勾股定理、锐角三角函数的定义等知识来解决问题.13、m>1【解析】由条件可知二次函数对称轴为x=2m,且开口向上,由二次函数的性质可知在对称轴的左侧时y随x的增大而减小,可求得m+1<2m,即m>1.故答案为m>1.点睛:本题主要考查二次函数的性质,掌握当抛物线开口向下时,在对称轴右侧y随x的增大而减小是解题的关键.14、④【解析】

根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.【详解】①[0)=1,故本项错误;②[x)−x>0,但是取不到0,故本项错误;③[x)−x⩽1,即最大值为1,故本项错误;④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.故答案是:④.【点睛】此题考查运算的定义,解题关键在于理解题意的运算法则.15、40°.【解析】

∵将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案为40°.16、(1,0)【解析】分析:由于C、D是定点,则CD是定值,如果的周长最小,即有最小值.为此,作点D关于x轴的对称点D′,当点E在线段CD′上时的周长最小.详解:如图,作点D关于x轴的对称点D′,连接CD′与x轴交于点E,连接DE.若在边OA上任取点E′与点E不重合,连接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,可知△CDE的周长最小,∵在矩形OACB中,OA=3,OB=4,D为OB的中点,∴BC=3,D′O=DO=2,D′B=6,∵OE∥BC,∴Rt△D′OE∽Rt△D′BC,有∴OE=1,∴点E的坐标为(1,0).故答案为:(1,0).点睛:考查轴对称-最短路线问题,坐标与图形性质,相似三角形的判定与性质等,找出点E的位置是解题的关键.17、x<1【解析】

要使代数式有意义时,必有1﹣x>2,可解得x的范围.【详解】根据题意得:1﹣x>2,解得:x<1.故答案为x<1.【点睛】考查了分式和二次根式有意义的条件.二次根式有意义,被开方数为非负数,分式有意义,分母不为2.三、解答题(共7小题,满分69分)18、(1)50名;(2)补图见解析;(3)刚好抽到同性别学生的概率是【解析】试题分析:(1)由题意可得本次调查的学生共有:15÷30%;(2)先求出C的人数,再求出C的百分比即可;

(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到同性别学生的情况,再利用概率公式即可求得答案.试题解析:(1)根据题意得:15÷30%=50(名).答;在这项调查中,共调查了50名学生;(2)图如下:(3)用A表示男生,B表示女生,画图如下:共有20种情况,同性别学生的情况是8种,则刚好抽到同性别学生的概率是.19、1千米/时【解析】

设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20﹣x)千米/时,根据由货轮往返两个码头之间,可知顺水航行的距离与逆水航行的距离相等列出方程,解方程即可求解.【详解】设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20﹣x)千米/时,根据题意得:6(20﹣x)=1(20+x),解得:x=1.答:水流的速度是1千米/时.【点睛】本题考查了一元一次方程的应用,读懂题意,找出等量关系,设出未知数后列出方程是解决此类题目的基本思路.20、(1)81;(2)108人;(3)见解析.【解析】

(1)根据众数的概念解答;(2)求出九年级学生体质健康的优秀率,计算即可;(3)分别从不同的角度进行评价.【详解】解:(1)由测试成绩可知,81分出现的次数最多,∴a=81,故答案为:81;(2)九年级学生体质健康的优秀率为:,九年级体质健康优秀的学生人数为:180×60%=108(人),答:估计该校九年级体质健康优秀的学生人数为108人;(3)①因为八年级学生的平均成绩高于九年级的平均成绩,且八年级学生成绩的方差小于九年级的方差,所以八年级学生的体质健康情况更好一些.②因为九年级学生的优秀率(60%)高于八年级的优秀率(40%),且九年级学生成绩的众数或中位数高于八年级的众数或中位数,所以九年级学生的体质健康情况更好一些.【点睛】本题考查的是用样本估计总体、方差、平均数、众数和中位数的概念和性质,正确求出样本的众数、理解方差和平均数、众数、中位线的性质是解题的关键.21、(1)B(-3,0),C(1,0);(2)①见解析;②≤t≤6.【解析】

(1)根据抛物线的顶点坐标列方程,即可求得抛物线的解析式,令y=0,即可得解;(2)①根据翻折的性质写出翻折后的抛物线的解析式,与直线方程联立,求得交点坐标即可;②当t=0时,直线与抛物线只有一个交点N(3,-6)(相切),此时直线与G无交点;第一个交点出现时,直线过点C(1+t,0),代入直线解析式:y=-4x+6+t,解得t=;最后一个交点是B(-3+t,0),代入y=-4x+6+t,解得t=6,所以≤t≤6.【详解】(1)因为抛物线的顶点为M(-1,-2),所以对称轴为x=-1,可得:,解得:a=,c=,所以抛物线解析式为y=x2+x,令y=0,解得x=1或x=-3,所以B(-3,0),C(1,0);(2)①翻折后的解析式为y=-x2-x,与直线y=-4x+6联立可得:x2-3x+=0,解得:x1=x2=3,所以该一元二次方程只有一个根,所以点N(3,-6)是唯一的交点;②≤t≤6.【点睛】本题主要考查了图形运动,解本题的要点在于熟知一元二次方程的相关知识点.22、(1)见解析(2)见解析【解析】

(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论