2025届石家庄市重点中学高一下数学期末经典试题含解析_第1页
2025届石家庄市重点中学高一下数学期末经典试题含解析_第2页
2025届石家庄市重点中学高一下数学期末经典试题含解析_第3页
2025届石家庄市重点中学高一下数学期末经典试题含解析_第4页
2025届石家庄市重点中学高一下数学期末经典试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届石家庄市重点中学高一下数学期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列中,,则公差()A. B. C.1 D.22.记为实数中的最大数.若实数满足则的最大值为()A. B.1 C. D.3.点(4,0)关于直线5x+4y+21=0的对称点是().A.(-6,8) B.(-8,-6) C.(6,8) D.(-6,-8)4.函数的最小正周期是()A. B. C. D.5.在中,角A,B,C所对的边分别为a,b,c,若,,则的值为()A.4 B. C. D.6.设,是两条不同的直线,,是两个不同的平面,是下列命题正确的是()A.若,,则 B.若,,,则C.若,,,则 D.若,,,则7.直线的倾斜角是()A.30° B.60° C.120° D.135°8.如图所示,在ΔABC,已知∠A:∠B=1:2,角C的平分线CD把三角形面积分为3:2两部分,则cosAA.13 B.12 C.39.若将函数的图象向右平移个单位,所得图象关于轴对称,则的最小值是()A. B. C. D.10.已知平面向量与的夹角为,且,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为第二象限角,且,则_________.12.若不等式的解集为空集,则实数的能为___________.13.某中学为了了解全校学生的阅读情况,在全校采用随机抽样的方法抽取一个样本进行问卷调查,并将他们在一个月内去图书馆的次数进行了统计,将学生去图书馆的次数分为5组:制作了如图所示的频率分布表,则抽样总人数为_______.14.甲、乙两名新战土组成战术小组进行射击训练,已知单发射击时,甲战士击中靶心的概率为0.8,乙战士击中靶心的概率为0.5,两人射击的情况互不影响若两人各单发射击一次,则至少有一发击中靶心的概率是______.15.如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,则x的值为_________.16.等差数列前项和为,已知,,则_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知关于的不等式.(1)当时,求不等式的解集;(2)当且m≠1时,求不等式的解集.18.已知向量,,,.(Ⅰ)若四边形是平行四边形,求,的值;(Ⅱ)若为等腰直角三角形,且为直角,求,的值.19.设等比数列{}的首项为,公比为q(q为正整数),且满足是与的等差中项;数列{}满足.(1)求数列{}的通项公式;(2)试确定的值,使得数列{}为等差数列:(3)当{}为等差数列时,对每个正整数是,在与之间插入个2,得到一个新数列{},设是数列{}的前项和,试求满足的所有正整数.20.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出回归方程;(3)已知该厂技改前吨甲产品的生产能耗为吨标准煤.试根据(2)求出的线性回归方程,预测生产吨甲产品的生产能耗比技改前降低多少吨标准煤?(注:,)21.在中,边所在的直线方程为,其中顶点的纵坐标为1,顶点的坐标为.(1)求边上的高所在的直线方程;(2)若的中点分别为,,求直线的方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

利用通项得到关于公差d的方程,解方程即得解.【详解】由题得.故选C【点睛】本题主要考查数列的通项的基本量的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.2、B【解析】

先利用判别式法求出|x|,|y|,|z|的取值范围,再判断得解.【详解】因为,所以,整理得:,解得,所以,同理,.故选B【点睛】本题主要考查新定义和判别式法求范围,意在考查学生对这些知识的理解掌握水平和分析推理能力.3、D【解析】试题分析:设点(4,0)关于直线5x+4y+21=0的对称点是,则点在直线5x+4y+21=0上,将选项代入就可排除A,B,C,答案为D考点:点关于直线对称,排除法的应用4、C【解析】

根据三角函数的周期公式,进行计算,即可求解.【详解】由角函数的周期公式,可得函数的周期,又由绝对值的周期减半,即为最小正周期为,故选C.【点睛】本题主要考查了三角函数的周期的计算,其中解答中熟记余弦函数的图象与性质是解答的关键,着重考查了计算与求解能力,属于基础题.5、B【解析】

由正弦定理可得,,代入即可求解.【详解】∵,,∴由正弦定理可得,,则.故选:B.【点睛】本题考查正弦定理的简单应用,考查函数与方程思想,考查运算求解能力,属于基础题.6、D【解析】

根据空间中线线,线面,面面位置关系,逐项判断即可得出结果.【详解】A选项,若,,则可能平行、相交、或异面;故A错;B选项,若,,,则可能平行或异面;故B错;C选项,若,,,如果再满足,才会有则与垂直,所以与不一定垂直;故C错;D选项,若,,则,又,由面面垂直的判定定理,可得,故D正确.故选D【点睛】本题主要考查空间的线面,面面位置关系,熟记位置关系,以及判定定理即可,属于常考题型.7、C【解析】

根据直线方程求出斜率即可得到倾斜角.【详解】由题:直线的斜率为,所以倾斜角为120°.故选:C【点睛】此题考查根据直线方程求倾斜角,需要熟练掌握直线倾斜角与斜率的关系,熟记常见特殊角的三角函数值.8、C【解析】

由两个三角形的面积比,得到边ACCB=32,利用正弦定理【详解】∵角C的平分线CD,∴∠ACD=∠BCD∵S∴设AC=3x,CB=2x,∵∠A:∠B=1:2,设∠A=α,∠B=2α,在ΔABC中,利用正弦定理2xsin解得:cosα=【点睛】本题考查三角形面积公式、正弦定理在平面几何中的综合应用.9、B【解析】

把函数的解析式利用辅助角公式化成余弦型函数解析式形式,然后求出向右平移个单位后函数的解析式,根据题意,利用余弦型函数的性质求解即可.【详解】,该函数求出向右平移个单位后得到新函数的解析式为:,由题意可知:函数的图象关于轴对称,所以有当时,有最小值,最小值为.故选:B【点睛】本题考查了余弦型函数的图象平移,考查了余弦型函数的性质,考查了数学运算能力.10、A【解析】

根据平面向量数量积的运算法则,将平方运算可得结果.【详解】∵,∴,∴cos=4,∴,故选A.【点睛】本题考查了利用平面向量的数量积求模的应用问题,考查了数量积与模之间的转化,是基础题目.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】

先由求出的值,再利用同角三角函数的基本关系式求出、即可.【详解】因为为第二象限角,且,所以,解得,再由及为第二象限角可得、,此时.故答案为:.【点睛】本题主要考查两角差的正切公式及同角三角函数的基本关系式的应用,属常规考题.12、【解析】

根据分式不等式,移项、通分并等价化简,可得一元二次不等式.结合二次函数恒成立条件,即可求得的值.【详解】将不等式化简可得即的解集为空集所以对于任意都恒成立将不等式等价化为即恒成立由二次函数性质可知化简不等式可得解得故答案为:【点睛】本题考查了分式不等式的解法,将不等式等价化为一元二次不等式,结合二次函数性质解决恒成立问题,属于中档题.13、20【解析】

总体人数占的概率是1,也可以理解成每个人在整体占的比重一样,所以三组的频率为:,共有14人,即14人占了整体的0.7,那么整体共有人。【详解】前三组,即三组的频率为:,,解得:【点睛】此题考查概率,通过部分占总体的概率即可计算出总体的样本值,属于简单题目。14、【解析】

利用对立事件概率计算公式和相互独立事件概率乘法公式能求出至少有一发击中靶心的概率.【详解】甲、乙两名新战土组成战术小组进行射击训练,单发射击时,甲战士击中靶心的概率为0.8,乙战士击中靶心的概率为0.5,两人射击的情况互不影响若两人各单发射击一次,则至少有一发击中靶心的概率是:.故答案为0.1.【点睛】本题考查概率的求法,考查对立事件概率计算公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于基础题.15、【解析】

根据茎叶图中数据和中位数的定义可构造方程求得.【详解】甲组数据的中位数为,解得:故答案为:【点睛】本题考查茎叶图中中位数相关问题的求解,属于基础题.16、1【解析】

首先根据、即可求出和,从而求出。【详解】,①,②①②得,,即,∴,即,∴,故答案为:1.【点睛】本题主要考查了解方程,以及等差数列的性质和前项和。其中等差数列的性质:若则比较常考,需理解掌握。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)当时,解集为;当或时,解集为【解析】

(1)当时,不等式是一个不含参的二次不等式,分解因式,即可求得;(2)对参数进行分类讨论,从而确定不等式的解集.【详解】(1)当时,原不等式为故其解集为(2)令则方程两根为.因为所以①当即时,解集为;②当即或时,解集为.综上可得:①当即时,解集为;②当即或时,解集为.【点睛】本题考查不含参二次不等式的求解,以及含参不等式的求解,属基础题.18、(Ⅰ);(Ⅱ)或.【解析】

(Ⅰ)由得到x,y的方程组,解方程组即得x,y的值;(Ⅱ)由题得和,解方程组即得,的值.【详解】(Ⅰ),,,,,由,,;(Ⅱ),,为直角,则,,又,,再由,解得:或.【点睛】本题主要考查平面向量的数量积运算和模的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、(1);(2);(3).【解析】

(1)由已知可求出的值,从而可求数列的通项公式;(2)由已知可求,从而可依次写出,,若数列为等差数列,则有,从而可确定的值;(3)因为,,,检验知,3,4不合题意,适合题意.当时,若后添入的数则一定不适合题意,从而必定是数列中的某一项,设则误解,即有都不合题意.故满足题意的正整数只有.【详解】解(1)因为,所以,解得或(舍),则又,所以(2)由,得,所以,,,则由,得而当时,,由(常数)知此时数列为等差数列(3)因为,易知不合题意,适合题意当时,若后添入的数,则一定不适合题意,从而必是数列中的某一项,则.整理得,等式左边为偶数,等式右边为奇数,所以无解。综上:符合题意的正整数.【点睛】本题主要考察了等差数列与等比数列的综合应用,考察了函数单调性的证明,属于中档题.20、(1)见解析.(2).(3)吨.【解析】

(1)直接描点即可(2)计算出的平均数,,及,,利用公式即可求得,问题得解.(3)将代入可得,结合已知即可得解.【详解】解:(1)把所给的四对数据写成对应的点的坐标,在坐标系中描出来,得到散点图;(2)计算,,,,∴回归方程的系数为:.,∴所求线性回归方程为;(3)利用线性回归方程计算时,,则,即比技改前降低了19.65吨.【点睛】本题主要考查了线性回归方程的求法,考查计算能力

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论