




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省南通市启东中学高一下数学期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为三角形ABC的一个内角,若,则这个三角形的形状为()A.锐角三角形 B.钝角三角形C.等腰直角三角形 D.等腰三角形2.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳3.在等差数列an中,a1+a2A.2n B.2n+1 C.2n-1 D.2n+24.下列函数中最小值为4的是()A. B.C. D.5.右图中,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,则该几何体的体积为()A. B. C. D.6.下列事件是随机事件的是(1)连续两次掷一枚硬币,两次都出现正面向上.(2)异性电荷相互吸引(3)在标准大气压下,水在℃时结冰(4)任意掷一枚骰子朝上的点数是偶数A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)7.数列中,,则数列的极限值()A.等于0 B.等于1 C.等于0或1 D.不存在8.己知数列和的通项公式分別内,,若,则数列中最小项的值为()A. B.24 C.6 D.79.在正四棱柱中,,,则与所成角的余弦值为()A. B. C. D.10.若f(x)=af1(x)bf2(x)a,b∈R已知g1(x)=(-x2+12x-20)12生成函数g(x),已知g(4)=2(6-3),A.1 B.4 C.6 D.9二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的通项公式为,数列的通项公式为,设,若在数列中,对任意恒成立,则实数的取值范围是_________.12.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.13.在中,角,,所对的边分别为,,,若,则角最大值为______.14.在直角坐标系中,直线与直线都经过点,若,则直线的一般方程是_____.15.已知,,,则的最小值为______.16.在锐角中,角、、所对的边为、、,若的面积为,且,,则的弧度为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角的对边分别为,已知,,.(1)求的值;(2)求和的值.18.如图,为圆的直径,点,在圆上,,矩形和圆所在的平面互相垂直,已知,.(1)求证:平面平面;(2)当时,求多面体的体积.19.在中,内角,,的对边分别为,已知.(1)求角的大小;(2)若,且,求的面积.20.已知等比数列的公比,前项和为,且.(1)求数列的通项公式;(2)设,求数列的前项和.21.如图,在四棱锥中,平面,底面是菱形,连,交于点.(Ⅰ)若点是侧棱的中点,连,求证:平面;(Ⅱ)求证:平面平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:由,两边平方得,即,又,则,所以为第三、四象限角或轴负半轴上的角,所以为钝角.故正确答案为B.考点:1.三角函数的符号、平方关系;2.三角形内角.2、A【解析】
观察折线图可知月接待游客量每年7,8月份明显高于12月份,且折线图呈现增长趋势,高峰都出现在7、8月份,1月至6月的月接待游客量相对于7月至12月波动性更小.【详解】对于选项A,由图易知月接待游客量每年7,8月份明显高于12月份,故A错;对于选项B,观察折线图的变化趋势可知年接待游客量逐年增加,故B正确;对于选项C,D,由图可知显然正确.故选A.【点睛】本题考查折线图,考查考生的识图能力,属于基础题.3、C【解析】
直接利用等差数列公式解方程组得到答案.【详解】aaa1故答案选C【点睛】本题考查了等差数列的通项公式,属于基础题型.4、C【解析】
对于A和D选项不能保证基本不等式中的“正数”要求,对于B选项不能保证基本不等式中的“相等”要求,即可选出答案.【详解】对于A,当时,显然不满足题意,故A错误.对于B,,,.当且仅当,即时,取得最小值.但无解,故B错误.对于D,当时,显然不满足题意,故D错误.对于C,,,.当且仅当,即时,取得最小值,故C正确.故选:C【点睛】本题主要考查基本不等式,熟练掌握基本不等式的步骤为解题的关键,属于中档题.5、D【解析】
由三视图可知,该几何体为棱长为2的正方体截去一个三棱锥,由正方体的体积减去三棱锥的体积求解.【详解】根据三视图,可知原几何体如下图所示,该几何体为棱长为的正方体截去一个三棱锥,则该几何体的体积为.故选:D.【点睛】本题考查了几何体三视图的应用问题以及几何体体积的求法,关键是根据三视图还原原来的空间几何体,是中档题.6、D【解析】试题分析:根据随机事件的定义:在相同条件下,可能发生也可能不发生的现象(2)是必然发生的,(3)是不可能发生的,所以不是随机事件,故选择D考点:随机事件的定义7、B【解析】
根据题意得到:时,,再计算即可.【详解】因为当时,.所以.故选:B【点睛】本题主要考查数列的极限,解题时要注意公式的选取和应用,属于中档题.8、D【解析】
根据两个数列的单调性,可确定数列,也就确定了其中的最小项.【详解】由已知数列是递增数列,数列是递减数列,且计算后知,又,∴数列中最小项的值是1.故选D.【点睛】本题考查数列的单调性,数列的最值.解题时依据题意确定大小即可.本题难度一般.9、A【解析】
连结,结合几何体的特征,直接求解与所成角的余弦值即可.【详解】如图所示:在正四棱柱中,=1,=2,连结,则与所成角就是中的,所以与所成角的余弦值为:==.故选A.【点睛】本题考查正四棱柱的性质,直线与直线所成角的求法,考查空间想象能力以及计算能力,属于基础题.10、B【解析】
根据变换T(m,n)可生成函数g(x)=mg2(x)-ng1(x)=m(-x2+10x)1【详解】由题意可知g(x)=mg又g(4)=2(6-解得m=n=1,所以g(x)=又g(x)=10-x因为y=1x+x-2在x∈[2,10]上单调递减且为正值,y=10-x在x∈[2,10]上单调递减且为正值,所以g(x)=10-x(【点睛】本题主要考查了函数的单调性,利用单调性求函数的最大值,涉及创设新情景及函数式的变形,属于难题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
首先分析题意,可知是取和中的最大值,且是该数列中的最小项,结合数列的单调性和数列的单调性可得出或,代入数列的通项公式即可求出实数的取值范围.【详解】由题意可知,是取和中的最大值,且是数列中的最小项.若,则,则前面不会有数列的项,由于数列是单调递减数列,数列是单调递增数列.,数列单调递减,当时,必有,即.此时,应有,,即,解得.,即,得,此时;若,则,同理,前面不能有数列的项,即,当时,数列单调递增,数列单调递减,.当时,,由,即,解得.由,得,解得,此时.综上所述,实数的取值范围是.故答案为:.【点睛】本题考查利用数列的最小项求参数的取值范围,同时也考查了数列中的新定义,解题的关键就是要分析出数列的单调性,利用一些特殊项的大小关系得出不等式组进行求解,考查分析问题和解决问题的能力,属于难题.12、【解析】分析:由题意利用待定系数法求解圆的方程即可.详解:设圆的方程为,圆经过三点(0,0),(1,1),(2,0),则:,解得:,则圆的方程为.点睛:求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.13、【解析】
根据余弦定理列式,再根据基本不等式求最值【详解】因为所以角最大值为【点睛】本题考查余弦定理以及利用基本不等式求最值,考查基本分析求解能力,属中档题14、【解析】
点代入的方程求出k,再由求出直线的斜率,即可写出直线的点斜式方程.【详解】将点代入直线得,,解得,又,,于是的方程为,整理得.故答案为:【点睛】本题考查直线的方程,属于基础题.15、【解析】
将所求的式子变形为,展开后可利用基本不等式求得最小值.【详解】解:,,,,当且仅当时取等号.故答案为1.【点睛】本题考查了“乘1法”和基本不等式,属于基础题.由于已知条件和所求的式子都是和的形式,不能直接用基本不等式求得最值,使用“乘1法”之后,就可以利用基本不等式来求得最小值了.16、【解析】
利用三角形的面积公式求出的值,结合角为锐角,可得出角的弧度数.【详解】由三角形的面积公式可知,的面积为,得,为锐角,因此,的弧度数为,故答案为.【点睛】本题考查三角形面积公式的应用,考查运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),【解析】
(1)由,求得,由大边对大角可知均为锐角,利用同角三角函数关系求得,利用两角和差正弦公式求得结果;(2)根据正弦定理得到的关系,代入可求得;利用余弦定理求得.【详解】(1)(2)由正弦定理可得:又,解得:,则由余弦定理可得:【点睛】本题考查解三角形的相关知识,涉及到同角三角函数关系、两角和差正弦公式、大边对大角的关系、正弦定理和余弦定理的应用等知识,属于常考题型.18、(1)证明见解析;(2)【解析】
(1)由题可得,,从而可得平面,由此证明平面平面;(2)过作交于,所以为四棱锥的高,多面体的体积,利用体积公式即可得到答案.【详解】(1)证明:∵平面平面,矩形,,平面平面,∴平面,∵平面,∴,又∵为圆的直径,∴,又,∴平面,∵平面,平面平面;(2)过作交于,由面面垂直性质可得平面,即为四棱锥的高,由是边长为1的等边三角形,可得,又正方形的面积为4,∴..所以.【点睛】本题主要考查面面垂直的证明,以及求多面体的体积,要求熟练掌握相应判定定理以及椎体、柱体的体积公式,属于中档题.19、(1);(2).【解析】
(1)由二倍角公式得,求得则角可求;(2),得,由正弦定理得,再结合余弦定理得则面积可求【详解】(1)因为,所以,解得,因为,所以;(2)因为,所以,由正弦定理得所以,由余弦定理,,所以,所以.【点睛】本题考查二倍角公式,正余弦定理解三角形,准确计算是关键,是基础题20、(1).(2)【解析】
(1)根据条件列出等式,求解公比后即可求解出通项公式;(2)错位相减法求和,注意对于“错位”的理解.【详解】解:(1)由,得,则∴,∴数列的通项公式为.(2)由,∴,①,②①②,得,∴.【点睛】本题考查等比数列通项和求和,难度较易.对于等差乘以等比的形式的数列,求和注意选用错位相减法.21、(Ⅰ)见证明;(Ⅱ)见证明【解析】
(Ⅰ)由为菱形,得为中点,进而得到,利用线面平行的判定定理,即可求解;(Ⅱ)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 度退休人员兼职合同模板
- 2023-2024学年大连理工版小学信息技术五年级下册奇妙的编码(教学设计)
- 2023-2024学年沪科版(2019)高中信息技术必修一3.4《分析历史气温数据-设计批量数据算法》教学设计
- 10青山处处埋忠骨教学设计-2024-2025学年五年级下册语文统编版
- 餐厅股权合同范本
- 甜品批发合同范本
- 5 我爱我们班 教学设计-2024-2025学年道德与法治二年级上册统编版
- 2 百分数(二)成数 第二课时(教学设计)-2023-2024学年六年级下册数学人教版
- 24“诺曼底号”遇难记 教学设计-2023-2024学年四年级下册语文统编版
- 店面贷款合同范本
- 清洁氢能生产与输储技术创新
- 产品标准化大纲(课件)
- 贷款的培训课件
- 《雷达干扰技术概述》课件
- 新概念英语青少版入门 A-Unit-1课件(共98张)
- 广西易多收生物科技有限公司河池化工厂绿色节能生产升级项目环境影响报告书
- 北京市海淀区九年级英语第二学期期末练习(初三中考二模)试卷讲评-客观题
- (完整版)园艺产品贮藏与加工
- 中国古典文献-第七章-文献目录
- 学前教育大专毕业论文3000字
- 注塑领班简历样板
评论
0/150
提交评论