版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省龙岩一中数学高一下期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则函数的单调递增区间为()A. B. C. D.2.给出下列命题:(1)存在实数使.(2)直线是函数图象的一条对称轴.(3)的值域是.(4)若都是第一象限角,且,则.其中正确命题的题号为()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)3.圆的半径是,则的圆心角与圆弧围成的扇形面积是()A. B. C. D.4.如图2所示,程序框图的输出结果是()A.3 B.4 C.5 D.85.函数(,)的部分图象如图所示,则的值分别是()A. B. C. D.6.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为()A.0.35 B.0.25 C.0.20 D.0.157.在中,分别为角的对边),则的形状是()A.直角三角形 B.等腰三角形或直角三角形C.等腰直角三角形 D.正三角形8.设有直线和平面,则下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,l∥β,则α∥βC.若α⊥β,m⊂α,则m⊥β D.若α⊥β,m⊥β,m⊄α,则m∥α9.在等差数列中,如果,则数列前9项的和为()A.297 B.144 C.99 D.6610.已知Sn是等差数列{an}的前n项和,a2+a4+a6=12,则S7=()A.20 B.28 C.36 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.方程在上的解集为______.12.若,,则的值为______.13.设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β,下列四个命题正确的是________.①若l⊥β,则α⊥β;②若α⊥β,则l⊥m;③若l∥β,则α∥β;④若α∥β,则l∥m.14.已知等比数列的公比为,它的前项积为,且满足,,,给出以下四个命题:①;②;③为的最大值;④使成立的最大的正整数为4031;则其中正确命题的序号为________15.已知,向量的夹角为,则的最大值为_____.16.已知数列,若对任意正整数都有,则正整数______;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,某快递小哥从地出发,沿小路以平均速度为20公里小时送快件到处,已知公里,,是等腰三角形,.(1)试问,快递小哥能否在50分钟内将快件送到处?(2)快递小哥出发15分钟后,快递公司发现快件有重大问题,由于通讯不畅,公司只能派车沿大路追赶,若汽车的平均速度为60公里小时,问,汽车能否先到达处?18.已知向量,,.(1)若,求的值;(2)设,若恒成立,求的取值范围.19.已知向量,.(1)若,在集合中取值,求满足的概率;(2)若,在区间内取值,求满足的概率.20.(1)求函数的单调递增区间;(2)求函数,的单调递减区间.21.求经过点且分别满足下列条件的直线的一般式方程.(1)倾斜角为45°;(2)在轴上的截距为5;(3)在第二象限与坐标轴围成的三角形面积为4.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
由题意利用两角和的余弦公式化简函数的解析式,再利用余弦函数的单调性,得出结论.【详解】函数,令,求得,可得函数的增区间为,,.再根据,,可得增区间为,,故选.【点睛】本题主要考查两角和的余弦公式的应用,考查余弦函数的单调性,属于基础题.2、C【解析】
(1)化简求值域进行判断;(2)根据函数的对称性可判断;(3)根据余弦函数的图像性质可判断;(4)利用三角函数线可进行判断.【详解】解:(1),(1)错误;(2)是函数图象的一个对称中心,(2)错误;(3)根据余弦函数的性质可得的最大值为,,其值域是,(3)正确;(4)若都是第一象限角,且,利用三角函数线有,(4)正确.故选.【点睛】本题考查正弦函数与余弦函数、正切函数的性质,以及三角函数线定义,着重考查学生综合运用三角函数的性质分析问题、解决问题的能力,属于中档题.3、C【解析】
先将化为弧度数,再利用扇形面积计算公式即可得出.【详解】所以扇形的面积为:故选:C【点睛】题考查了扇形面积计算公式,考查了推理能力与计算能力,属于基础题.4、B【解析】
由框图可知,①,满足条件,则;②,满足条件,则;③,满足条件,则;④,不满足条件,输出;故选B5、A【解析】
利用,求出,再利用,求出即可【详解】,,,则有,代入得,则有,,,又,故答案选A【点睛】本题考查三角函数的图像问题,依次求出和即可,属于简单题6、B【解析】
已知三次投篮共有20种,再得到恰有两次命中的事件的种数,然后利用古典概型的概率公式求解.【详解】三次投篮共有20种,恰有两次命中的事件有:191,271,932,812,393,有5种∴该运动员三次投篮恰有两次命中的概率为故选:B【点睛】本题主要考古典概型的概率求法,还考查了运算求解的能力,属于基础题.7、A【解析】
根据正弦定理得到,化简得到,得到,得到答案.【详解】,则,即,即,,故,.故选:.【点睛】本题考查了正弦定理判断三角形形状,意在考查学生的计算能力和转化能力.8、D【解析】
在A中,m与n相交、平行或异面;在B中,α与β相交或平行;在C中,m⊥β或m∥β或m与β相交;在D中,由直线与平面垂直的性质与判定定理可得m∥α.【详解】由直线m、n,和平面α、β,知:对于A,若m∥α,n∥α,则m与n相交、平行或异面,故A错误;对于B,若m⊂α,n⊂α,m∥β,n∥β,则α∥β或α与β相交,故B错误;对于中,若α⊥β,α⊥β,m⊂α,则m⊥β或m∥β或m与β相交,故C错误;对于D,若α⊥β,m⊥β,m⊄α,则由直线与平面垂直的性质与判定定理得m∥α,故D正确.故选D.【点睛】本题考查了命题真假的判断问题,考查了空间线线、线面、面面的位置关系的判定定理及推论的应用,体现符号语言与图形语言的相互转化,是中档题.9、C【解析】试题分析:,,∴a4=13,a6=9,S9==99考点:等差数列性质及前n项和点评:本题考查了等差数列性质及前n项和,掌握相关公式及性质是解题的关键.10、B【解析】
由等差数列的性质计算.【详解】由题意,,∴.故选B.【点睛】本题考查等差数列的性质,灵活运用等差数列的性质可以很快速地求解等差数列的问题.在等差数列中,正整数满足,则,特别地若,则;.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由求出的取值范围,由可得出的值,从而可得出方程在上的解集.【详解】,,由,得.,解得,因此,方程在上的解集为.故答案为:.【点睛】本题考查正切方程的求解,解题时要求出角的取值范围,考查计算能力,属于基础题.12、【解析】
求出,将展开即可得解.【详解】因为,,所以,所以.【点睛】本题主要考查了三角恒等式及两角和的正弦公式,考查计算能力,属于基础题.13、①【解析】
由线面的平行垂直的判定和性质一一检验即可得解.【详解】由平面与平面垂直的判定可知,①正确;②中,当α⊥β时,l,m可以垂直,也可以平行,也可以异面;③中,l∥β时,α,β可以相交;④中,α∥β时,l,m也可以异面.故答案为①.【点睛】本题主要考查了线面、面面的垂直和平行位置关系的判定和性质,属于基础题.14、②③【解析】
利用等比数列的性质,可得,得出,进而判断②③④,即可得到答案.【详解】①中,由等比数列的公比为,且满足,,,可得,所以,且所以是错误的;②中,由等比数列的性质,可得,所以是正确的;③中,由,且,,所以前项之积的最大值为,所以是正确的;④中,,所以正确.综上可得,正确命题的序号为②③.故答案为:②③.【点睛】本题主要考查了等比数列的性质的应用,其中解答中熟记等比数列的性质,合理推算是解答的关键,着重考查了推理与运算能力,属于中档试题.15、【解析】
将两边平方,化简后利用基本不等式求得的最大值.【详解】将两边平方并化简得,由基本不等式得,故,即,即,所以的最大值为.【点睛】本小题主要考查平面向量模的运算,考查利用基本不等式求最值,考查化归与转化的数学思想方法,属于中档题.16、9【解析】
分析数列的单调性,以及数列各项的取值正负,得到数列中的最大项,由此即可求解出的值.【详解】因为,所以时,,时,,又因为在上递增,在也是递增的,所以,又因为对任意正整数都有,所以.故答案为:.【点睛】本题考查数列的单调性以及数列中项的正负判断,难度一般.处理数列单调性或者最值的问题时,可以采取函数的思想来解决问题,但是要注意到数列对应的函数的定义域为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)快递小哥不能在50分钟内将快件送到处.(2)汽车能先到达处.【解析】试题分析:(1)由题意结合图形,根据正弦定理可得,,求得的长,又,可求出快递小哥从地到地的路程,再计算小哥到达地的时间,从而问题可得解;(2)由题意,可根据余弦定理分别算出与的长,计算汽车行驰的路程,从而求出汽车到达地所用的时间,计算其与步小哥所用时间相差是否有15分钟,从而问题可得解.试题解析:(1)(公里),中,由,得(公里)于是,由知,快递小哥不能在50分钟内将快件送到处.(2)在中,由,得(公里),在中,,由,得(公里),-由(分钟)知,汽车能先到达处.点睛:此题主要考查了解三角形中正弦定理、余弦定理在实际生活中的应用,以及关于路程问题的求解运算等方面的知识与技能,属于中低档题型,也是常考题型.在此类问题中,总是正弦定理、余弦定理,以及相关联的三角函数的知识,所以根据题目条件、图形进行挖掘,找到与问题衔接处,从而寻找到问题的解决方案.18、(1);(2).【解析】
(1)由,转化为,利用弦化切的思想得出的值,从而求出的值;(2)由,转化为,然后利用平面向量数量积的坐标运算律和辅助角公式与函数的解析式进行化简,并求出在区间的最大值,即可得出实数的取值范围.【详解】(1)∵,且,,,∴,即,又∵,∴;(2)易知,,∵,∴,,当时,,取得最大值:,又恒成立,即,故.【点睛】本题考查平面向量数量积的坐标运算,考查三角函数的最值,在求解含参函数的不等式恒成立问题,可以利用参变量分离法,转化为函数的最值来求解,考查转化与化归数学思想,考查计算能力,属于中等题.19、(1)(2)【解析】
(1)首先求出包含的基本事件个数,由,由向量的坐标运算可得,列出满足条件的基本事件个数,根据古典概型概率计算公式即可求解.(2)根据题意全部基本事件的结果为,满足的基本事件的结果为,利用几何概型概率计算公式即可求解.【详解】(1),的所有取值共有个基本事件.由,得,满足包含的基本事件为,,,,,共种情形,故.(2)若,在上取值,则全部基本事件的结果为,满足的基本事件的结果为.画出图形如图,正方形的面积为,阴影部分的面积为,故满足的概率为.【点睛】本题考查了古典概型概率计算公式、几何概型概率计算公式,属于基础题.20、(1);(2).【解析】
(1)利用余弦函数的单调性列出不等式直接求的单调递增区间.(2)利用正弦函数的单调递减区间,直接求解,的单调递减区间.【详解】解:(1)由,,可得,,函数的单调递增区间:,.(2)因为,;可得,.时,.函数,的单调递减区间:.【点睛】本题考查三角函数的单调性的求法,考查学生的计算能力,属于基础题.21、(1)(2)(3)【解析】
(1)利用斜率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版环保设备销售合同变更及售后服务优化协议范本3篇
- 二零二五年知识产权保密安全技术服务合同5篇
- 文具办公用品购销合同
- 个人汽车租租赁协议
- 二零二五年高校食堂餐饮服务采购合同2篇
- 二零二五年度节能合同变更及减排措施协议3篇
- 二零二五年度金融机构资产证券化担保合同3篇
- 2024年知识产权许可使用合同:知名商标授权
- 2024年食品行业售后服务合同
- 2024年高铁车辆采购及维护保养合同
- 2025年河南鹤壁市政务服务和大数据管理局招聘12345市长热线人员10人高频重点提升(共500题)附带答案详解
- 建设项目安全设施施工监理情况报告
- 春节期间安全施工措施
- 2025年大唐集团招聘笔试参考题库含答案解析
- 建筑工地春节期间安全保障措施
- 路面弯沉温度修正系数
- TLFSA 003-2020 危害分析与关键控制点(HACCP)体系调味面制品生产企业要求
- LY/T 2244.3-2014自然保护区保护成效评估技术导则第3部分:景观保护
- 纪律教育月批评与自我批评五篇
- GB/T 26480-2011阀门的检验和试验
- GB/T 13342-2007船用往复式液压缸通用技术条件
评论
0/150
提交评论