![2023-2024学年山东省烟台市莱州市一中数学高一下期末教学质量检测试题含解析_第1页](http://file4.renrendoc.com/view12/M06/21/1F/wKhkGWZpNbaARodoAAHk_h3ekWk964.jpg)
![2023-2024学年山东省烟台市莱州市一中数学高一下期末教学质量检测试题含解析_第2页](http://file4.renrendoc.com/view12/M06/21/1F/wKhkGWZpNbaARodoAAHk_h3ekWk9642.jpg)
![2023-2024学年山东省烟台市莱州市一中数学高一下期末教学质量检测试题含解析_第3页](http://file4.renrendoc.com/view12/M06/21/1F/wKhkGWZpNbaARodoAAHk_h3ekWk9643.jpg)
![2023-2024学年山东省烟台市莱州市一中数学高一下期末教学质量检测试题含解析_第4页](http://file4.renrendoc.com/view12/M06/21/1F/wKhkGWZpNbaARodoAAHk_h3ekWk9644.jpg)
![2023-2024学年山东省烟台市莱州市一中数学高一下期末教学质量检测试题含解析_第5页](http://file4.renrendoc.com/view12/M06/21/1F/wKhkGWZpNbaARodoAAHk_h3ekWk9645.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年山东省烟台市莱州市一中数学高一下期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在ΔABC中,已知BC=2AC,B∈[πA.[π4C.[π42.若,则的最小值为()A. B. C. D.3.若数列前12项的值各异,且对任意的都成立,则下列数列中可取遍前12项值的数列为()A. B. C. D.4.过点且与直线垂直的直线方程是()A. B. C. D.5.已知等比数列的前项和为,若,则()A. B. C.5 D.66.如图是正方体的展开图,则在这个正方体中:①与平行;②与是异面直线;③与成60°角;④与垂直.以上四个命题中,正确命题的序号是A.①②③ B.②④ C.③④ D.②③④7.在等腰梯形ABCD中,,点E是线段BC的中点,若,则A. B. C. D.8.用数学归纳法证明1+a+a2+…+an+1=(a≠1,n∈N*),在验证n=1成立时,左边的项是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a49.祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的.祖暅原理的内容是:“幂势既同,则积不容异”,“势”即是高,“幂”是面积.意思是,如果夹在两平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果两个截面的面积总相等,那么这两个几何体的体积相等.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都是h),其中:三棱锥的体积为V,四棱锥的底面是边长为a的正方形,圆锥的底面半径为r,现用平行于这两个平面的平面去截三个几何体,如果得到的三个截面面积总相等,那么,下面关系式正确的是()A.,, B.,,C.,, D.,,10.已知命题,则命题的否定为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知则sin2x的值为________.12.己知中,角所対的辻分別是.若,=,,则=______.13.设等比数列的公比,前项和为,则.14.已知函数,的最小正周期是___________.15.正方体中,分别是的中点,则所成的角的余弦值是__________.16.把二进制数化为十进制数是:______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,.(1)求证:数列是等比数列;(2)求数列的通项公式.18.研究正弦函数的性质(1)写出其单调增区间的表达式(2)利用五点法,画出的大致图像(3)用反证法证明的最小正周期是19.从高三学生中抽出50名学生参加数学竞赛,由成绩得到如图所示的频率分布直方图.利用频率分布直方图求:(1)这50名学生成绩的众数与中位数;(2)这50名学生的平均成绩.(答案精确到0.1)20.已知向量(cosx+sinx,1),(sinx,),函数.(1)若f(θ)=3且θ∈(0,π),求θ;(2)求函数f(x)的最小正周期T及单调递增区间.21.在中,角A,B,C所对的边分别为a,b,c,.(1)求角B;(2)若,求周长的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由BC=2AC,根据正弦定理可得:sinA=2sinB,由角【详解】由于在ΔABC中,有BC=2AC,根据正弦定理可得由于B∈[π6,π4]由于在三角形中,A∈0,π,由正弦函数的图像可得:A∈[故答案选D【点睛】本题考查正弦定理在三角形中的应用,以及三角函数图像的应用,属于中档题.2、D【解析】
根据对数运算可求得且,,利用基本不等式可求得最小值.【详解】由得:且,(当且仅当时取等号)本题正确选项:【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够利用对数运算得到积的定值,属于基础题.3、C【解析】
根据题意可知利用除以12所得的余数分析即可.【详解】由题知若要取遍前12项值的数列,则需要数列的下标能够取得除以12后所有的余数.因为12的因数包括3,4,6,故不能除以12后取所有的余数.如除以12的余数只能取1,4,7,10的循环余数.又5不能整除12,故能够取得除以12后取所有的余数.故选:C【点睛】本题主要考查了数列下标整除与余数的问题,属于中等题型.4、D【解析】
由已知直线方程求得直线的斜率,再根据两直线垂直,得到所求直线的斜率,最后用点斜式写出所求直线的方程.【详解】已知直线的斜率为:因为两直线垂直所以所求直线的斜率为又所求直线过点所以所求直线方程为:即:故选:D【点睛】本题主要考查了直线与直线的位置关系及直线方程的求法,还考查了运算求解的能力,属于基础题.5、A【解析】
先通分,再利用等比数列的性质求和即可。【详解】.故选A.【点睛】本题考查等比数列的性质,属于基础题。6、C【解析】
将正方体的展开图还原为正方体后,即可得到所求正确结论.【详解】将正方体的展开图还原为正方体ABCD﹣EFMN后,可得AF,CN异面;BM,AN平行;连接AN,NF,可得∠FAN为AF,BM所成角,且为60°;BN⊥DE,DE⊥AB可得DE⊥平面ABN,可得DE⊥BN,可得③④正确,故选C.【点睛】本题考查展开图与空间几何体的关系,考查空间线线的位置关系的判断,属于基础题.7、B【解析】
利用平面向量的几何运算,将用和表示,根据平面向量基本定理得,的值,即可求解.【详解】取AB的中点F,连CF,则四边形AFCD是平行四边形,所以,且因为,,,∴故选B.【点睛】本题主要考查了平面向量的基本定理的应用,其中解答中根据平面向量的基本定理,将用和进行表示,求得的值是解答的关键,着重考查了推理与运算能力,属于基础题.8、C【解析】
在验证时,左端计算所得的项,把代入等式左边即可得到答案.【详解】解:用数学归纳法证明,
在验证时,把当代入,左端.
故选:C.【点睛】此题主要考查数学归纳法证明等式的问题,属于概念性问题.9、D【解析】
由祖暅原理可知:三个几何体的体积相等,根据椎体体积公式即可求解.【详解】由祖暅原理可知:三个几何体的体积相等,则,解得,由,解得,所以.故选:D【点睛】本题考查了椎体的体积公式,需熟记公式,属于基础题.10、C【解析】
根据全称命题的否定是特称命题,可直接得出结果.【详解】命题“”的否定是“”.故选C【点睛】本题主要考查全称命题的否定,只需改量词和结论即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用二倍角的余弦函数公式求出的值,再利用诱导公式化简,将的值代入计算即可求出值.【详解】解:∵,,则sin2x==,故答案为.【点睛】此题考查了二倍角的余弦函数公式,以及诱导公式的作用,熟练掌握公式是解本题的关键.12、1【解析】
应用余弦定理得出,再结合已知等式配出即可.【详解】∵,即,∴,①又由余弦定理得,②,②-①得,∴,∴.故答案为1.【点睛】本题考查余弦定理,掌握余弦定理是解题关键,解题时不需要求出的值,而是用整体配凑的方法得出配凑出,这样可减少计算.13、15【解析】分析:运用等比数列的前n项和公式与数列通项公式即可得出的值.详解:数列为等比数列,故答案为15.点睛:本题考查了等比数列的通项公式与前n项和公式,考查学生对基本概念的掌握能力与计算能力.14、【解析】
先化简函数f(x),再利用三角函数的周期公式求解.【详解】由题得,所以函数的最小正周期为.故答案为【点睛】本题主要考查和角的正切和正切函数的周期的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.15、【解析】
取的中点,由得出异面直线与所成的角为,然后在由余弦定理计算出,可得出结果.【详解】取的中点,由且可得为所成的角,设正方体棱长为,中利用勾股定理可得,又,由余弦定理可得,故答案为.【点睛】本题考查异面直线所成角的计算,一般利用平移直线找出异面直线所成的角,再选择合适的三角形,利用余弦定理或锐角三角函数来计算,考查空间想象能力与计算能力,属于中等题.16、51【解析】110011(2)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】
(1)利用数列的递推公式证明出为非零常数,即可证明出数列是等比数列;(2)确定等比数列的首项和公比,求出数列的通项公式,即可求出.【详解】(1),,因此,数列是等比数列;(2)由于,所以,数列是以为首项,以为公比的等比数列,,因此,.【点睛】本题考查等比数列的证明,同时也考查了数列通项的求解,考查推理能力与计算能力,属于中等题.18、(1)(2)见解析(3)见解析【解析】
(1)利用正弦函数的图象和性质即可得解;(2)利用五点法作函数的图象即可;(3)先证明,再假设存在,使得,令,可得,令,可得,得到矛盾,即可得证.【详解】(1)单调递增区间为,所以单调递增区间的表达式为(2)列表:描点,连线,可得函数图象如下:(3)证明:,假设存在,使得,即,令,则,即;再令,可得,得到矛盾,综上可知的最小正周期是.【点睛】本题主要考查了正弦函数的单调性,五点法作函数的图象,考查了反证法的应用,属于中档题.19、(1)众数为75分,中位数为分;(2)76.2分【解析】
(1)由众数的概念及频率分布直方图可求得众数,根据中位数的概念可求得中位数;.(2)由平均数的概念和频率直方图可求得平均数.【详解】(1)由众数的概念及频率分布直方图可知,这50名学生成绩的众数为75分.因为数学竞赛成绩在的频率为,数学竞赛成绩在的频率为.所以中位数为.(2)这50名学生的平均成绩为.【点睛】本题考查根据频率直方图求得数字特征,关键在于理解各数字特征的含义,属于基础题.20、(1)θ(2)最小正周期为π;单调递增区间为[kπ,kπ],k∈Z【解析】
(1)计算平面向量的数量积得出函数f(x)的解析式,求出f(θ)=3时θ的值;
(2)根据函数f(x)的解析式,求出它的最小正周期和单调递增区间.【详解】(1)向量(cosx+sinx,1),(sinx,),函数=sinx(cosx+sinx)sinxcosx+sin2xsin2xcos2x+2=sin(2x)+2,f(θ)=3时,sin(2θ)=1,解得2θ2kπ,k∈Z,即θkπ,k∈Z;又θ∈(0,π),所以θ;(2)函数f(x)=sin(2x)+2,它的最小正周期为Tπ;令2kπ≤2x2kπ,k∈Z,kπ≤xkπ,k∈Z,所以f(x)的单调递增区间为[kπ,kπ],k∈Z.【点睛】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 科技发展与学科教育的互促关系研究
- 科技教育编程教育的普及与推广
- DB4453T 30-2025广藿香组培苗生产技术规程
- DB35T 2232-2024海峡两岸共通 火龙果生产技术规程
- 东莞企业劳动合同范本
- 个人贷款房屋抵押合同模板大全
- 业务经营权转让合同
- 个人车位共有权买卖合同
- 临时仓储合同范本
- 两人股权转让合同范本
- 电梯结构与原理-第2版-全套课件
- IEC-62368-1-差异分享解读
- SWITCH塞尔达传说旷野之息-1.6金手指127项修改使用说明教程
- 2022-2023学年广东省佛山市顺德区高三(下)模拟英语试卷
- 节后复工培训内容五篇
- GB/T 33322-2016橡胶增塑剂芳香基矿物油
- GA 1051-2013枪支弹药专用保险柜
- 某水毁公路维修工程施工方案
- 家庭病房工作制度和人员职责
- 建设工程监理合同示范文本GF-2018-0202
- 2022质检年终工作总结5篇
评论
0/150
提交评论