安徽省淮北市、宿州市2024届高一下数学期末预测试题含解析_第1页
安徽省淮北市、宿州市2024届高一下数学期末预测试题含解析_第2页
安徽省淮北市、宿州市2024届高一下数学期末预测试题含解析_第3页
安徽省淮北市、宿州市2024届高一下数学期末预测试题含解析_第4页
安徽省淮北市、宿州市2024届高一下数学期末预测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省淮北市、宿州市2024届高一下数学期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆C的半径为2,在圆内随机取一点P,并以P为中点作弦AB,则弦长的概率为A. B. C. D.2.甲、乙、丙三人随意坐下,乙不坐中间的概率为()A. B. C. D.3.直线的倾斜角为A. B. C. D.4.对于空间中的两条直线,和一个平面,下列结论正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则5.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10记为数列,将可被5整除的三角形数,按从小到大的顺序组成一个新数列,可以推测:()A.1225 B.1275 C.2017 D.20186.已知在中,为线段上一点,且,若,则()A. B. C. D.7.在x轴上的截距为2且倾斜角为135°的直线方程为().A.y=-x+2 B.y=-x-2 C.y=x+2 D.y=x-28.从装有两个红球和两个黑球的口袋里任取两个球,那么对立的两个事件是()A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球”D.“至少有一个黑球”与“都是红球”9.把函数的图像上所有的点向左平行移动个单位长度,再把所得图像上所有点的横坐标缩短到原来的(纵坐标不变),得到的图像所表示的函数是()A. B.C. D.10.如果a<b<0,那么下列不等式成立的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知一个扇形的周长为4,则扇形面积的最大值为______.12.用数学归纳法证明时,从“到”,左边需增乘的代数式是___________.13.等差数列中,则此数列的前项和_________.14.某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.15.水平放置的的斜二测直观图如图所示,已知,,则边上的中线的实际长度为______.16.若,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线l经过点,并且其倾斜角等于直线的倾斜角的2倍.求直线l的方程.18.已知内角的对边分别是,若,,.(1)求;(2)求的面积.19.已知的内角A,B,C所对的边分别为a,b,c,且.(1)若,求的值;(2)若,求b,c的值.20.四棱锥中,,,底面,,直线与底面所成的角为,、分别是、的中点.(1)求证:直线平面;(2)若,求证:直线平面;(3)求棱锥的体积.21.如图为某区域部分交通线路图,其中直线,直线l与、、都垂直,垂足分别是点A、点B和点C(高速线右侧边缘),直线与、与的距离分别为1米、2千米,点M和点N分别在直线和上,满足,记.(1)若,求AM的长度;(2)记的面积为,求的表达式,并问为何值时,有最小值,并求出最小值;(3)求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

先求出临界状态时点P的位置,若,则点P与点C的距离必须大于或等于临界状态时与点C的距离,再根据几何概型的概率计算公式求解.【详解】如图所示:当时,此时,若,则点P必须位于以点C为圆心,半径为1和半径为2的圆环内,所以弦长的概率为:.故选B.【点睛】本题主要考查几何概型与圆的垂径定理,此类题型首先要求出临界状态时的情况,再判断满足条件的区域.2、A【解析】甲、乙、丙三人随意坐下有种结果,乙坐中间则有,乙不坐中间有种情况,概率为,故选A.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.3、D【解析】

求得直线的斜率,由此求得直线的倾斜角.【详解】依题意,直线的斜率为,对应的倾斜角为,故选D.【点睛】本小题主要考查由直线一般式求斜率和倾斜角,考查特殊角的三角函数值,属于基础题.4、C【解析】

依次分析每个选项中两条直线与平面的位置关系,确定两条直线的位置关系即可.【详解】平行于同一平面的两条直线不一定相互平行,故选项A错误,平行于平面的直线不一定与该平面内的直线平行,故选项B错误,垂直于平面的直线,垂直于与该平面平行的所有线,故选项C正确,垂直于同一平面的两条直线相互平行,故选项D错误.故选:C.【点睛】本题考查了直线与平面位置关系的辨析,属于基础题.5、A【解析】

通过寻找规律以及数列求和,可得,然后计算,可得结果.【详解】根据题意可知:则由…可得所以故选:A【点睛】本题考查不完全归纳法的应用,本题难点在于找到,属难题,6、C【解析】

首先,由已知条件可知,再有,这样可用表示出.【详解】∵,∴,,∴,∴.故选C.【点睛】本题考查平面向量基本定理,解题时用向量加减法表示出,然后用基底表示即可.7、A【解析】直线的斜率为tan135°=-1,由点斜式求得直线的方程为y=-x+b,将截据y=0,x=2代入方程,解得b=2,所以,可得y=-x+2,故答案为A8、D【解析】

写出所有等可能事件,求出事件“至少有一个黑球”的概率为,事件“都是红球”的概率为,两事件的概率和为,从而得到两事件对立.【详解】记两个黑球为,两个红球为,则任取两球的所有等可能结果为:,记事件A为“至少有一个黑球”,事件为:“都是红球”,则,因为,所以事件与事件互为对立事件.【点睛】本题考查古典概型和对立事件的判断,利用两事件的概率和为1是判断对立事件的常用方法.9、C【解析】

根据左右平移和周期变换原则变换即可得到结果.【详解】向左平移个单位得:将横坐标缩短为原来的得:本题正确选项:【点睛】本题考查三角函数的左右平移变换和周期变换的问题,属于基础题.10、D【解析】对于选项A,因为,所以,所以即,所以选项A错误;对于选项B,,所以,选项B错误;对于选项C,,当时,,当,,故选项C错误;对于选项D,,所以,又,所以,所以,选D.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

表示出扇形的面积,利用二次函数的单调性即可得出.【详解】设扇形的半径为,圆心角为,则弧长,,即,该扇形的面积,当且仅当时取等号.该扇形的面积的最大值为.故答案:.【点睛】本题考查了弧长公式与扇形的面积计算公式、二次函数的单调性,考查了计算能力,属于基础题.12、.【解析】

从到时左边需增乘的代数式是,化简即可得出.【详解】假设时命题成立,则,当时,从到时左边需增乘的代数式是.故答案为:.【点睛】本题考查数学归纳法的应用,考查推理能力与计算能力,属于中档题.13、180【解析】由,,可知.14、分层抽样.【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样故答案为分层抽样.点睛:本题主要考查简单随机抽样,属于基础题.15、【解析】

利用斜二测直观图的画图规则,可得为一个直角三角形,且,得,从而得到边上的中线的实际长度为.【详解】利用斜二测直观图的画图规则,平行于轴或在轴上的线段,长度保持不变;平行于轴或在轴上的线段,长度减半,利用逆向原则,所以为一个直角三角形,且,所以,所以边上的中线的实际长度为.【点睛】本题考查斜二测画法的规则,考查基本识图、作图能力.16、;【解析】

把分子的1换成,然后弦化切,代入计算.【详解】.故答案为-1.【点睛】本题考查三角函数的化简求值.解题关键是“1”的代换,即,然后弦化切.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】

求出直线的倾斜角,可得所求直线的倾斜角,从而可得斜率,再利用点斜式可得结果.【详解】因为直线的斜率为,所以其倾斜角为30°,所以,所求直线的倾斜角为60°故所求直线的斜率为,又所求直线经过点,所以其方程为,即,故答案为:.【点睛】本题主要考查直线的斜率与倾斜角,考查了直线点斜式方程的应用,意在考查对基础知识的掌握情况,属于基础题.18、(1);(2).【解析】

(1)在中,由正弦定理得,再由余弦定理,列出方程,即可求解得值;(2)由(1)求得,利用三角形的面积公式,即可求解三角形的面积.【详解】(1)在中,,,,由正弦定理得,由余弦定理得,解得或不合题意,舍去,(2)由(1)知,所以,所以的面积为.【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,着重考查了运算与求解能力,属于基础题.19、(1);(2)【解析】

(1)先求出,再利用正弦定理可得结果;(2)由求出,再利用余弦定理解三角形.【详解】(1)∵,且,∴,由正弦定理得,∴;(2)∵,∴,∴,由余弦定理得,∴.【点睛】本题考查正弦余弦定理解三角形,是基础题.20、(1)见解析(2)见解析(3)【解析】

(1)由中位线定理可得,,再根据平行公理可得,,即可根据线面平行的判定定理证出;(2)根据题意可计算出,而是的中点,可得,又,即可根据线面垂直的判定定理证出;(3)根据等积法,即可求出.【详解】(1)证明:连接,,,、是、中点,,从而.又平面,平面,直线平面;(2)证明:,,.底面,直线与底面成角,..是的中点,.,.面,面,直线平面;(3)由题可知,,.【点睛】本题主要考查线面平行的判定定理,线面垂直的判定定理的应用,以及利用等积法求三棱锥的体积,意在考查学生的直观想象能

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论