版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届白城市重点中学高一数学第二学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.有穷数列中的每一项都是-1,0,1这三个数中的某一个数,,且,则有穷数列中值为0的项数是()A.1000 B.1010 C.1015 D.10302.在平行四边形中,,若点满足且,则A.10 B.25 C.12 D.153.若圆与圆外切,则()A.21 B.19 C.9 D.-114.已知中,,,,那么角等于()A. B. C.或 D.5.如图,平面ABCD⊥平面EDCF,且四边形ABCD和四边形EDCF都是正方形,则异面直线BD与CE所成的角为()A. B. C. D.6.已知数列{an}满足a1=2A.2 B.-3 C.-127.如果数列的前项和为,则这个数列的通项公式是()A. B. C. D.8.正四棱柱的高为3cm,体对角线长为cm,则正四棱柱的侧面积为()A.10 B.24 C.36 D.409.在中,,BC边上的高等于,则()A. B. C. D.10.设正实数满足,则当取得最大值时,的最大值为()A.0 B.1 C. D.3二、填空题:本大题共6小题,每小题5分,共30分。11.设,,,,,为坐标原点,若、、三点共线,则的最小值是_______.12.若实数满足不等式组则的最小值是_____.13.已知为第二象限角,且,则_________.14.已知正四棱锥的底面边长为,高为,则该四棱锥的侧面积是______________15.已知六棱锥的底面是正六边形,平面,.则下列命题中正确的有_____.(填序号)①PB⊥AD;②平面PAB⊥平面PAE;③BC∥平面PAE;④直线PD与平面ABC所成的角为45°.16.sin750°=三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,(1)求;(2)若,求.18.已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.(1)求k的取值范围;(2)若=12,其中O为坐标原点,求|MN|.19.已知等差数列中,,.(1)求数列的通项公式;(2)求数列的前项和.20.在直角中,,延长至点D,使得,连接.(1)若,求的值;(2)求角D的最大值.21.某科技创新公司在第一年年初购买了一台价值昂贵的设备,该设备的第1年的维护费支出为20万元,从第2年到第6年,每年的维修费增加4万元,从第7年开始,每年维修费为上一年的125%.(1)求第n年该设备的维修费的表达式;(2)设,若万元,则该设备继续使用,否则须在第n年对设备更新,求在第几年必须对该设备进行更新?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
把(a1+1)2+(a2+1)2+(a3+1)2+…+(a2015+1)2=3870展开,将a1+a2+a3+…+a2015=425,代入化简得:=1005,由于数列a1,a2,a3,…,a2015中的每一项都是﹣1,0,1这三个数中的某一个数,即可得出.【详解】(a1+1)2+(a2+1)2+(a3+1)2+…+(a2015+1)2=3870,展开可得:+2(a1+a2+…+a2015)+2015=3870,把a1+a2+a3+…+a2015=425,代入化简可得:=1005,∵数列a1,a2,a3,…,a2015中的每一项都是﹣1,0,1这三个数中的某一个数,∴有穷数列a1,a2,a3,…,a2015中值为0的项数等于2015﹣1005=1.故选B.【点睛】本题考查了乘法公式化简求值、数列求和,考查了推理能力与计算能力,属于中档题.2、C【解析】
先由题意,用,表示出,再由题中条件,根据向量数量积的运算,即可求出结果.【详解】因为点满足,所以,则故选C.【点睛】本题主要考查向量数量积的运算,熟记平面向量基本定理以及数量积的运算法则即可,属于常考题型.3、C【解析】试题分析:因为,所以且圆的圆心为,半径为,根据圆与圆外切的判定(圆心距离等于半径和)可得,故选C.考点:圆与圆之间的外切关系与判断4、B【解析】
先由正弦定理求出,进而得出角,再根据大角对大边,大边对大角确定角.【详解】由正弦定理得:,,∴或,∵,∴,∴,故选B.【点睛】本题主要考查正弦定理的应用以及大边对大角,大角对大边的三角形边角关系的应用.5、C【解析】
以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,利用向量法能求出异面直线BD与CE所成的角.【详解】∵平面ABCD⊥平面EDCF,且四边形ABCD和四边形EDCF都是正方形,∴以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,设AB=1,则B(1,1,0),D(0,0,0),C(0,1,0),E(0,0,1),(﹣1,﹣1,0),(0,﹣1,1),设异面直线BD与CE所成的角为θ,则cosθ,∴θ.∴异面直线BD与CE所成的角为.故选:C.【点评】本题考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.6、D【解析】
先通过列举找到数列的周期,再利用数列的周期求值.【详解】由题得a2所以数列的周期为4,所以a2020故选:D【点睛】本题主要考查递推数列和数列的周期,意在考查学生对这些知识的理解掌握水平,属于基础题.7、B【解析】
根据,当时,,再结合时,,可知是以为首项,为公比的等比数列,从而求出数列的通项公式.【详解】由,当时,,所以,当时,,此时,所以,数列是以为首项,为公比的等比数列,即.故选:B.【点睛】本题考查了利用递推公式求数列的通项公式,考查了计算能力,属于基础题.8、B【解析】
设正四棱柱,设底面边长为,由正四棱柱体对角线的平方等于从同一顶点出发的三条棱的平方和,可得关于的方程.【详解】如图,正四棱柱,设底面边长为,则,解得:,所以正四棱柱的侧面积.【点睛】本题考查正棱柱的概念,即底面为正方形且侧棱垂直于底面的几何体,考查几何体的侧面积计算.9、C【解析】试题分析:设,故选C.考点:解三角形.10、B【解析】
x,y,z为正实数,且,根据基本不等式得,当且仅当x=2y取等号,所以x=2y时,取得最大值1,此时,,当时,取最大值1,的最大值为1,故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据三点共线求得的的关系式,利用基本不等式求得所求表达式的最小值.【详解】依题意,由于三点共线,所以,化简得,故,当且仅当,即时,取得最小值【点睛】本小题主要考查三点共线的向量表示,考查利用基本不等式求最小值,属于基础题.12、4【解析】试题分析:由于根据题意x,y满足的关系式,作出可行域,当目标函数z=2x+3y在边界点(2,0)处取到最小值z=2×2+3×0=4,故答案为4.考点:本试题主要考查了线性规划的最优解的运用.点评:解决该试题的关键是解决线性规划的小题时,常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.13、.【解析】
先由求出的值,再利用同角三角函数的基本关系式求出、即可.【详解】因为为第二象限角,且,所以,解得,再由及为第二象限角可得、,此时.故答案为:.【点睛】本题主要考查两角差的正切公式及同角三角函数的基本关系式的应用,属常规考题.14、【解析】四棱锥的侧面积是15、②④【解析】
利用题中条件,逐一分析答案,通过排除和筛选,得到正确答案.【详解】∵AD与PB在平面的射影AB不垂直,∴①不成立;∵PA⊥平面ABC,∴PA⊥AB,在正六边形ABCDEF中,AB⊥AE,PAAE=A,∴AB⊥平面PAE,且AB面PAB,∴平面PAB⊥平面PAE,故②成立;∵BC∥AD∥平面PAD,平面PAD平面PAE=PA,∴直线BC∥平面PAE也不成立,即③不成立.在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,故④成立.故答案为②④.【点睛】本题考查命题真假的判断,解题时要注意直线与平面成的角、直线与平面垂直的性质的合理运用,属于中档题.16、1【解析】试题分析:由三角函数的诱导公式得sin750°=【考点】三角函数的诱导公式【名师点睛】本题也可以看作来自于课本的题,直接利用课本公式解题,这告诉我们一定要立足于课本.有许多三角函数的求值问题都是通过三角函数公式把一般的三角函数求值化为特殊角的三角函数求值而得解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)两边平方可得,根据同角公式可得,;(2)根据两角和的正切公式,计算可得结果.【详解】(1)因为,所以,即.因为,所以,所以,故.(2)因为,所以,所以.【点睛】本题考查了两角同角公式,二倍角正弦公式,两角和的正切公式,属于基础题.18、(3);(3)3.【解析】试题分析:(3)由题意可得,直线l的斜率存在,用点斜式求得直线l的方程,根据圆心到直线的距离等于半径求得k的值,可得满足条件的k的范围.(3)由题意可得,经过点M、N、A的直线方程为y=kx+3,根据直线和圆相交的弦长公式进行求解试题解析:(3)由题意可得,直线l的斜率存在,设过点A(2,3)的直线方程:y=kx+3,即:kx-y+3=2.由已知可得圆C的圆心C的坐标(3,3),半径R=3.故由,解得:.故当,过点A(2,3)的直线与圆C:相交于M,N两点.(3)设M;N,由题意可得,经过点M、N、A的直线方程为y=kx+3,代入圆C的方程,可得,∴,∴,由,解得k=3,故直线l的方程为y=x+3,即x-y+3=2.圆心C在直线l上,MN长即为圆的直径.所以|MN|=3考点:直线与圆的位置关系;平面向量数量积的运算19、(1)(2)【解析】
(1)先设等差数列的公差为,根据题中条件求出公差,即可得出通项公式;(2)根据前项和公式,即可求出结果.【详解】(1)依题意,设等差数列的公差为,因为,所以,又,所以公差,所以.(2)由(1)知,,所以【点睛】本题主要考查等差数列,熟记等差数列的通项公式与前项和公式即可,属于基础题型.20、(1);(2).【解析】
(1)在中,由正弦定理得,,再结合在直角中,,然后求解即可;(2)由正弦定理及两角和的余弦可得,然后结合三角函数的有界性求解即可.【详解】解:(1)设,在中,由正弦定理得,,而在直角中,,所以,因为,所以,又因为,所以,所以,所以;(2)设,在中,由正弦定理得,,而在直角中,,所以,因为,所以,即,即,根据三角函数有界性得,及,解得,所以角D的最大值为.【点睛】本题考查了正弦定理,重点考查了三角函数的有界性,属中档题.21、(1)(2)第9年【解析】
(1)将数列分为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购货合同购销合同的权益保障
- 放弃参加培训的理由说明
- 工程模板施工劳务分包协议
- 个人停车库租赁合同示例
- 还款协议合同样本
- 合同调整协议格式样本
- 董事服务合同的法律效力
- 权威采购合同范本样式
- 铝合金外门窗招标方案
- 水产品购销合同范本
- 《MBTI职业性格测试93题》
- 互联网导论智慧树知到答案章节测试2023年上海第二工业大学
- 防火门和防火卷帘的构造及安装标准
- 儿科护理学课程说课
- 《农村推行“四议两公开”工作法实施细则》
- 助产技术-胎头吸引术
- LY/T 2651-2016退化森林生态系统恢复与重建技术规程
- GB/T 24242.4-2020制丝用非合金钢盘条第4部分:特殊用途盘条
- GB 6675.3-2014玩具安全第3部分:易燃性能
- 统编初中语文教材七年级上册第三单元解析及教学建议
- 墨菲定律(参考课件)
评论
0/150
提交评论