2024届广西两校高一数学第二学期期末联考试题含解析_第1页
2024届广西两校高一数学第二学期期末联考试题含解析_第2页
2024届广西两校高一数学第二学期期末联考试题含解析_第3页
2024届广西两校高一数学第二学期期末联考试题含解析_第4页
2024届广西两校高一数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广西两校高一数学第二学期期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列{an}前n项和为Sn,且满足①数列{an}必为等比数列;②p=1时,S5=3132;③正确的个数有()A.1 B.2 C.3 D.42.已知点是抛物线:的焦点,点为抛物线的对称轴与其准线的交点,过作抛物线的切线,切点为,若点恰好在以,为焦点的双曲线上,则双曲线的离心率为()A. B. C. D.3.已知为第二象限角,则所在的象限是()A.第一或第三象限 B.第一象限C.第二象限 D.第二或第三象限4.设双曲线的左右焦点分别是,过的直线交双曲线的左支于两点,若,且,则双曲线的离心率是()A. B. C. D.5.若正实数,满足,且恒成立,则实数的取值范围为()A. B. C. D.6.已知,,,,则()A. B. C.或 D.或7.已知数列满足是数列的前项和,则()A. B. C. D.8.记等差数列前项和,如果已知的值,我们可以求得()A.的值 B.的值 C.的值 D.的值9.已知两条直线m,n,两个平面α,β,下列命题正确是()A.m∥n,m∥α⇒n∥α B.α∥β,m⊂α,n⊂β⇒m∥nC.α⊥β,m⊂α,n⊂β⇒m⊥n D.α∥β,m∥n,m⊥α⇒n⊥β10.已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某工厂生产三种不同型号的产品,产品数量之比依次为,现用分层抽样方法抽出一个容量为的样本,样本中种型号产品有16件,那么此样本的容量=12.设满足约束条件,则目标函数的最大值为______.13.在正方体中,是的中点,连接、,则异面直线、所成角的正弦值为_______.14.如图1,动点在以为圆心,半径为1米的圆周上运动,从最低点开始计时,用时4分钟逆时针匀速旋转一圈后停止.设点的纵坐标(米)关于时间(分)的函数为,则该函数的图像大致为________.(请注明关键点)15.将正偶数按下表排列成列,每行有个偶数的蛇形数列(规律如表中所示),则数字所在的行数与列数分别是_______________.第列第列第列第列第列第行第行第行第行……16.若正实数满足,则的最大值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.等差数列中,,.(1)求数列的通项公式;(2)设,求的值.18.某校高二年级共有800名学生参加2019年全国高中数学联赛江苏赛区初赛,为了解学生成绩,现随机抽取40名学生的成绩(单位:分),并列成如下表所示的频数分布表:分组频数⑴试估计该年级成绩不低于90分的学生人数;⑵成绩在的5名学生中有3名男生,2名女生,现从中选出2名学生参加访谈,求恰好选中一名男生一名女生的概率.19.在正方体中.(1)求证:;(2)是中点时,求直线与面所成角.20.已知函数.(1)求函数的单调递增区间;(2)当时,求函数的最大值和最小值.21.已知数列的前n项和为,且,.(1)求数列的通项公式;(2)若等差数列满足,且,,成等比数列,求c.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由数列的递推式和等比数列的定义可得数列{an}为首项为p【详解】Sn+an=2pn⩾2时,Sn-1+a相减可得2an-an-1=0,即有数列由①可得p=1时,S5|a|a5|+|由①可得am·a可得p=1故选:C.【点睛】本题考查数列的递推式的运用,以及等比数列的定义和通项公式、求和公式的运用,考查化简整理的运算能力,属于中档题.2、C【解析】由题意,得,设过的抛物线的切线方程为,联立,,令,解得,即,不妨设,由双曲线的定义得,,则该双曲线的离心率为.故选C.3、A【解析】

用不等式表示第二象限角,再利用不等式的性质求出满足的不等式,从而确定角的终边在的象限.【详解】由已知为第二象限角,则则当时,此时在第一象限.当时,,此时在第三象限.故选:A【点睛】本题考查象限角的表示方法,不等式性质的应用,通过角满足的不等式,判断角的终边所在的象限.4、C【解析】,则,所以,,则,所以,故选C。点睛:离心率问题关键是利用圆锥曲线的几何性质,以及三角形的几何关系来解决,本题中,由双曲线的几何性质,可以将图中的各边长都表示出来,再利用同一个角在两个三角形中的余弦定理,就可以得到的等量关系,求出离心率。5、B【解析】

根据,结合基本不等式可求得,从而得到关于的不等式,解不等式求得结果.【详解】由题意知:,,(当且仅当,即时取等号),解得:本题正确选项:【点睛】本题考查利用基本不等式求解和的最小值问题,关键是配凑出符合基本不等式的形式,从而求得最值.6、B【解析】

先根据角的范围及平方关系求出和,然后可算出,进而可求出【详解】因为,,,所以,,所以,所以因为,所以故选:B【点睛】在由三角函数的值求角时,应根据角的范围选择合适的三角函数,以免产生多的解.7、D【解析】

由已知递推关系式可以推出数列的特征,即数列和均是等比数列,利用等比数列性质求解即可.【详解】解:由已知可得,当时,由得,所以数列和均是公比为2的等比数列,首项分别为2和1,由等比数列知识可求得,,故选:D.【点睛】本题主要考查递推关系式,及等比数列的相关知识,属于中档题.8、C【解析】

设等差数列{an}的首项为a1,公差为d,由a5+a21=2a1+24d的值为已知,再利用等差数列的求和公式,即可得出结论.【详解】设等差数列{an}的首项为a1,公差为d,∵已知a5+a21的值,∴2a1+24d的值为已知,∴a1+12d的值为已知,∵∴我们可以求得S25的值.故选:C.【点睛】本题考查等差数列的通项公式与求和公式的应用,考查学生的计算能力,属于中档题.9、D【解析】

在A中,n∥α或n⊂α;在B中,m与n平行或异面;在C中,m与n相交、平行或异面;在D中,由线面垂直的判定定理得:α∥β,m∥n,m⊥α⇒n⊥β.【详解】由两条直线m,n,两个平面α,β,知:在A中,m∥n,m∥α⇒n∥α或n⊂α,故A错误;在B中,α∥β,m⊂α,n⊂β⇒m与n平行或异面,故B错误;在C中,α⊥β,m⊂α,n⊂β⇒m与n相交、平行或异面,故C错误;在D中,由线面垂直的判定定理得:α∥β,m∥n,m⊥α⇒n⊥β,故D正确.故选:D.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.10、B【解析】试题分析:如图,取中点,连接,因为是中点,则,或其补角就是异面直线所成的角,设正四面体棱长为1,则,,.故选B.考点:异面直线所成的角.【名师点睛】求异面直线所成的角的关键是通过平移使其变为相交直线所成角,但平移哪一条直线、平移到什么位置,则依赖于特殊的点的选取,选取特殊点时要尽可能地使它与题设的所有相减条件和解题目标紧密地联系起来.如已知直线上的某一点,特别是线段的中点,几何体的特殊线段.二、填空题:本大题共6小题,每小题5分,共30分。11、1.【解析】

解:A种型号产品所占的比例为2/(2+3+5)=2/10,16÷2/10=1,故样本容量n=1,12、7【解析】

首先画出可行域,然后判断目标函数的最优解,从而求出目标函数的最大值.【详解】如图,画出可行域,作出初始目标函数,平移目标函数,当目标函数过点时,目标函数取得最大值,,解得,.故填:7.【点睛】本题考查了线性规划问题,属于基础题型.13、【解析】

作出图形,设正方体的棱长为,取的中点,连接、,推导出,并证明出,可得出异面直线、所成的角为,并计算出、,可得出,进而得解.【详解】如下图所示,设正方体的棱长为,取的中点,连接、,为的中点,则,,且,为的中点,,,在正方体中,且,则四边形为平行四边形,,所以,异面直线、所成的角为,在中,,,.因此,异面直线、所成角的正弦值为.故答案为:.【点睛】本题考查异面直线所成角的正弦值的计算,考查计算能力,属于中等题.14、【解析】

根据题意先得出,再画图.【详解】解:设,,,,,则当时,处于最低点,则,,可画图为:故答案为:【点睛】本题考查了三角模型的实际应用,关键是根据题意建立函数模型,属中档题.15、行列【解析】

设位于第行第列,观察表格中数据的规律,可得出,由此可求出的值,再观察奇数行和偶数行最小数的排列,可得出的值,由此可得出结果.【详解】设位于第行第列,由表格中的数据可知,第行最大的数为,则,解得,由于第行最大的数为,所以,是表格中第行最小的数,由表格中的规律可知,奇数行最小的数放在第列,那么.因此,位于表格中第行第列.故答案为:行列.【点睛】本题考查归纳推理,解题的关键就是要结合表格中数据所呈现的规律来进行推理,考查推理能力,属于中等题.16、【解析】

可利用基本不等式求的最大值.【详解】因为都是正数,由基本不等式有,所以即,当且仅当时等号成立,故的最大值为.【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(Ⅰ)设等差数列的公差为.由已知得,解得.所以.(Ⅱ)由(Ⅰ)可得.所以.考点:1、等差数列通项公式;2、分组求和法.18、(1)300人;(2)【解析】

(1)由频数分布表可得40人中成绩不低于90分的学生人数为15人,由此可计算出该年级成绩不低于90分的学生人数;(2)根据题意写出所有的基本事件,确定基本事件的个数,即可计算出恰好选中一名男生一名女生的概率.【详解】⑴40名学生中成绩不低于90分的学生人数为15人;所以估计该年级成绩不低于90分的学生人数为⑵分别记男生为1,2,3号,女生为4,5号,从中选出2名学生,有如下基本事件(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)因此,共有10个基本事件,上述10个基本事件发生的可能性相同,且只有6个基本事件是选中一名男生一名女生(记为事件),即(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)∴【点睛】本题考查频率分布表以及古典概型的概率计算,,考查学生的运算能力,属于基础题.19、(1)见解析;(2).【解析】

(1)连接,证明平面,进而可得出;(2)连接、、,设,过点在平面内作,垂足为点,连接,设,则角和均为直线与平面所成的角,从而可得出,即可求出所求角.【详解】(1)如下图所示,连接,在正方体中,平面,平面,,四边形为正方形,,,平面,平面,;(2)连接、、,设,过点在平面内作,垂足为点,设,设正方体的棱长为,在正方体中,且,所以,四边形为平行四边形,,平面,平面,在平面内,,,,,则、、、四点共面,为的中点,,且,平面,平面,,由勾股定理得,连接,设,则直线与面所成角为,则,,由连比定理得,则,因此,直线与面所成角为.【点睛】本题考查线线垂直的证明,考查线面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20、(1);(2)函数的最大值为,最小值为.【解析】

用二倍角正弦公式、降幂公式、辅助角公式对函数的解析式进行化简,然后利用正弦型函数的单调性求解即可.【详解】.(1)当时,函数递增,解得,所以函数的单调递增区间为;(2)因为,所以,因此所以函数的最大值为,最小值为.【点睛】本题考查了正弦型函数的单调性和最值,考查了辅助角公式、二倍角的正弦公式、降幂公式,考查了数学运算能力.21、(1);(2).【解析】

(1)根据题意,数列为1为首项,4为公差的等差数列,根据等差数列通项公式计算即可;(2)由(1)可求数列的前n项和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论