版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年云南省峨山县大龙潭中学高一数学第二学期期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,集合为整数集,则()A. B. C. D.2.设,则的大小关系为()A. B. C. D.3.设△ABC的内角A、B、C所对边分别为a、b、c,若a=3,b=,A=,则B=()A. B.或 C. D.或4.在空间直角坐标系中,轴上的点到点的距离是,则点的坐标是()A. B. C. D.5.已知,,,则它们的大小关系是()A. B. C. D.6.在中,角A、B、C所对的边分别为a、b、c,且若,则的形状是()A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形7.若,则t=()A.32 B.23 C.14 D.138.直线与圆相交于点,则()A. B. C. D.9.已知数列的通项公式是,则该数列的第五项是()A. B. C. D.10.函数图象向右平移个单位长度,所得图象关于原点对称,则在上的单调递增区间为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若向量与平行.则__.12.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为_________.13.已知三棱锥P-ABC,PA⊥平面ABC,AC⊥BC,PA=2,AC=BC=1,则三棱锥P-ABC外接球的体积为__.14.设等差数列的前项和为,若,,则的最小值为______.15.甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为________.16.如图,一栋建筑物AB高(30-10)m,在该建筑物的正东方向有一个通信塔CD.在它们之间的地面M点(B、M、D三点共线)测得对楼顶A、塔顶C的仰角分别是15°和60°,在楼顶A处测得对塔顶C的仰角为30°,则通信塔CD的高为______m.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象关于直线对称,且图象上相邻两个最高点的距离为.(1)求与的值;(2)若,求的值.18.求过三点的圆的方程.19.如图,已知圆:,点.(1)求经过点且与圆相切的直线的方程;(2)过点的直线与圆相交于、两点,为线段的中点,求线段长度的取值范围.20.为保障高考的公平性,高考时每个考点都要安装手机屏蔽仪,要求在考点周围1km内不能收到手机信号,检查员抽查某市一考点,在考点正西约km/h的的B处有一条北偏东60°方向的公路,在此处检查员用手机接通电话,以每小时12千米的速度沿公路行驶,最多需要多少时间,检查员开始收不到信号,并至少持续多长时间该考点才算合格?21.为了了解当下高二男生的身高状况,某地区对高二年级男生的身高(单位:)进行了抽样调查,得到的频率分布直方图如图所示.已知身高在之间的男生人数比身高在之间的人数少1人.(1)若身高在以内的定义为身高正常,而该地区共有高二男生18000人,则该地区高二男生中身高正常的大约有多少人?(2)从所抽取的样本中身高在和的男生中随机再选出2人调查其平时体育锻炼习惯对身高的影响,则所选出的2人中至少有一人身高大于185的概率是多少?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】试题分析:,选A.【考点定位】集合的基本运算.2、B【解析】
不难发现从而可得【详解】,故选B.【点睛】本题考查利用指数函数和对数函数的单调性比较数大小.3、A【解析】
由已知利用正弦定理可求的值,利用大边对大角可求为锐角,利用特殊角的三角函数值,即可得解.【详解】由题意知,由正弦定理,可得==,又因为,可得B为锐角,所以.故选A.【点睛】本题主要考查了正弦定理,大边对大角,特殊角的三角函数值在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.4、A【解析】
由空间两点的距离公式,代入求解即可.【详解】解:由已知可设,由空间两点的距离公式可得,解得,即,故选:A.【点睛】本题考查了空间两点的距离公式,属基础题.5、C【解析】因为,,故选C.6、C【解析】
直接利用余弦定理的应用求出A的值,进一步利用正弦定理得到:b=c,最后判断出三角形的形状.【详解】在△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.则:,由于:0<A<π,故:A.由于:sinBsinC=sin2A,利用正弦定理得:bc=a2,所以:b2+c2﹣2bc=0,故:b=c,所以:△ABC为等边三角形.故选C.【点睛】本题考查了正弦定理和余弦定理及三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.7、B【解析】
先计算得到,再根据得到等式解得答案.【详解】故答案选B【点睛】本题考查了向量的计算,意在考查学生对于向量运算法则的灵活运用及计算能力.8、D【解析】
利用直线与圆相交的性质可知,要求,只要求解圆心到直线的距离.【详解】由题意圆,可得圆心,半径,圆心到直线的距离.则由圆的性质可得,所以.故选:D【点睛】本题考查了求弦长、圆的性质,同时考查了点到直线的距离公式,属于基础题.9、A【解析】
代入即可得结果.【详解】解:由已知,故选:A.【点睛】本题考查数列的项和项数之间的关系,是基础题.10、A【解析】
根据三角函数的图象平移关系结合函数关于原点对称的性质求出的值,结合函数的单调性进行求解即可.【详解】函数图象向右平移个单位长度,得到,所得图象关于原点对称,则,得,,∵,∴当时,,则,由,,得,,即函数的单调递增区间为,,∵,∴当时,,即,即在上的单调递增区间为,故选:A.【点睛】本题主要考查三角函数的图象和性质,求出函数的解析式结合三角函数的单调性是解决本题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由题意利用两个向量共线的性质,两个向量坐标形式的运算法则,求得的值.【详解】由题意,向量与平行,所以,解得.故答案为.【点睛】本题主要考查了两个向量共线的性质,两个向量坐标形式的运算,着重考查了推理与计算能力,属于基础题.12、【解析】记甲、乙两人相邻而站为事件A甲、乙、丙三人随机地站成一排的所有排法有=6,则甲、乙两人相邻而站的战法有=4种站法∴=13、6【解析】
如图所示,取PB的中点O,∵PA⊥平面ABC,∴PA⊥AB,PA⊥BC,又BC⊥AC,PA∩AC=A,∴BC⊥平面PAC,∴BC⊥PC.∴OA=12PB,OC=12PB,∴OA=OB=OC=OP,故O为外接球的球心.又PA=2,AC=BC=1,∴AB=2,PB=6,∴外接球的半径R=∴V球=43πR3=4π3×(62)3=6点睛:空间几何体与球接、切问题的求解方法:(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.14、【解析】
用基本量法求出数列的通项公式,由通项公式可得取最小值时的值,从而得的最小值.【详解】设数列公差为,则由已知得,解得,∴,,,又,、∴的最小值为.故答案为:..【点睛】本题考查等差数列的前项和的最值.首项为负且递增的等差数列,满足的最大的使得最小,首项为正且递减的等差数列,满足的最大的使得最大,当然也可把表示为的二次函数,由二次函数知识求得最值.15、【解析】甲、乙两人下棋,只有三种结果,甲获胜,乙获胜,和棋;甲不输,即甲获胜或和棋,甲不输的概率为16、60【解析】
由已知可以求出、、的大小,在中,利用锐角三角函数,可以求出.在中,运用正弦定理,可以求出.在中,利用锐角三角函数,求出.【详解】由题意可知:,,由三角形内角和定理可知.在中,.在中,由正弦定理可知:,在中,.【点睛】本题考查了锐角三角函数、正弦定理,考查了数学运算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解析】
(1)根据最高顶点间的距离求出周期得,根据对称轴求出;(2)根据题意求出,结合诱导公式及和差公式求解.【详解】解:(1)因的图象上相邻两个最高点的距离为,∴的最小正周期,从而.又因的图象关于直线对称,∴.∵,∴,此时.(2)由(1)得,∴,由得,∴,∴.【点睛】此题考查根据三角函数图像性质求参数的值,结合诱导公式和差公式处理三角求值的问题.18、【解析】
设圆的一般方程,利用待定系数法求解.【详解】设圆的方程为经过,所以,解得:,所以圆的方程为.【点睛】此题考查求圆的方程,根据圆上的三个点的坐标求圆的方程可以待定系数法求解,也可根据几何意义分别求出圆心和半径.19、(1)或;(2).【解析】试题分析:(1)设直线方程点斜式,再根据圆心到直线距离等于半径求斜率;最后验证斜率不存在情况是否满足题意(2)先求点的轨迹:为圆,再根据点到圆上点距离关系确定最值试题解析:(1)当过点直线的斜率不存在时,其方程为,满足条件.当切线的斜率存在时,设:,即,圆心到切线的距离等于半径3,,解得.切线方程为,即故所求直线的方程为或.(2)由题意可得,点的轨迹是以为直径的圆,记为圆.则圆的方程为.从而,所以线段长度的最大值为,最小值为,所以线段长度的取值范围为.20、答案见解析.【解析】
由题意利用正弦定理首先求得的大小,然后确定检查员检查合格的方法即可.【详解】检查开始处为,设公路上两点到考点的距离均为1km.在中,,由正弦定理,得,,.在中,,为等边三角形,.在段需要5min,在段需要5min.则最多需要5min,检查员开始收不到信号,并至少持续5min.【点睛】本题主要考查正弦定理的应用,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.21、(1)12600;(2).【解析】
(1)由频率分布直方图知,身高正常的频率,于是可得答案;(2)先计算出样本容量,再找出样本中身高在中的人数,从而利用古典概型公式得到答案.【详解】(1)由频率分布直方图知,身高正常的频率为0.7,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南京市2024年度城市供水排水工程合同
- 二零二四年高档住宅区供暖工程合同2篇
- 简易的材料购销合同
- 2024年度居间介绍工程采购合同3篇
- 商业演出合同范本
- 高铁护坡施工设备租赁2024年度合同
- 《事故树分析方法》课件
- 《市政道路施工概述》课件
- 个人承包合同出租车范本
- 财务人员管理报告范文
- 2024-2034年全球及中国核辐射行业市场发展现状及发展前景研究报告
- 微测网题库完整版行测
- 借款协议书格式模板示例
- 国家开放大学《管理英语4》边学边练Unit 5-8(答案全)
- 作家普希金课件
- 封山育林工程 投标方案(技术方案)
- 当代世界经济与政治 李景治 第八版 课件 第1、2章 当代世界政治、当代世界经济
- 2024年刑法知识考试题库附参考答案【满分必刷】
- 国开作业《公共关系学》实训项目1:公关三要素分析(六选一)参考552
- 肺功能进修总结汇报
- 《燃烧性能测试》课件-第二节 氧指数测试
评论
0/150
提交评论