天津市静海区瀛海学校2024届高一数学第二学期期末联考试题含解析_第1页
天津市静海区瀛海学校2024届高一数学第二学期期末联考试题含解析_第2页
天津市静海区瀛海学校2024届高一数学第二学期期末联考试题含解析_第3页
天津市静海区瀛海学校2024届高一数学第二学期期末联考试题含解析_第4页
天津市静海区瀛海学校2024届高一数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市静海区瀛海学校2024届高一数学第二学期期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列的前n项和为,且满足,则()A.1 B. C. D.20162.已知等差数列的前项和为,若,则()A.18 B.13 C.9 D.73.执行如图所示的程序框图,则输出的()A.3 B.4 C.5 D.64.若{an}是等差数列,且a1+a4+a7=45,a2+a5+a8=39,则a3+a6+a9=()A.39 B.20 C.19.5 D.335.三角函数是刻画客观世界周期性变化规律的数学模型,单位圆定义法是任意角的三角函数常用的定义方法,是以角度(数学上最常用弧度制)为自变量,任意角的终边与单位圆交点坐标为因变量的函数.平面直角坐标系中的单位圆指的是平面直角坐标系上,以原点为圆心,半径为单位长度的圆.问题:已知角的终边与单位圆的交点为,则()A. B. C. D.6.下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则7.取一根长度为的绳子,拉直后在任意位置剪断,则剪得两段绳有一段长度不小于的概率是()A. B. C. D.8.已知数列的前项和为,令,记数列的前项为,则()A. B. C. D.9.《九章算术》中有这样一个问题:今有女子善织,日增等尺,七日织二十八尺,第二日、第五日、第八日所织之和为十五尺,问若聘该女子做工半月(15日),一共能织布几尺()A.75 B.85 C.105 D.12010.设正项等比数列的前项和为,若,,则公比()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最大值为______.12.已知函数,,的图象如下图所示,则,,的大小关系为__________.(用“”号连接)13.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为__________.14.函数在的递减区间是__________15.____________.16.若,且,则的最小值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)已知,,且、都是第二象限角,求的值.(2)求证:.18.已知⊙C经过点、两点,且圆心C在直线上.(1)求⊙C的方程;(2)若直线与⊙C总有公共点,求实数的取值范围.19.已知定义域为的函数是奇函数.(Ⅰ)求实数的值;(Ⅱ)判断函数的单调性,并用定义加以证明.20.如图是某设计师设计的型饰品的平面图,其中支架,,两两成,,,且.现设计师在支架上装点普通珠宝,普通珠宝的价值为,且与长成正比,比例系数为(为正常数);在区域(阴影区域)内镶嵌名贵珠宝,名贵珠宝的价值为,且与的面积成正比,比例系数为.设,.(1)求关于的函数解析式,并写出的取值范围;(2)求的最大值及相应的的值.21.在中,角的对边分别是,且满足.(1)求角的大小;(2)若,边上的中线的长为,求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

利用和关系得到数列通项公式,代入数据得到答案.【详解】已知数列的前n项和为,且满足,相减:取答案选C【点睛】本题考查了和关系,数列的通项公式,意在考查学生的计算能力.2、B【解析】

利用等差数列通项公式、前项和列方程组,求出,.由此能求出.【详解】解:等差数列的前项和为,,,,解得,..故选:.【点睛】本题考查等差数列第7项的值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.3、C【解析】

由已知中的程序语句可知:该程序的功能是利用循环结构计算S的值并输出相应变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得

S=0,n=1

S=2,n=2

满足条件S<30,执行循环体,S=2+4=6,n=3

满足条件S<30,执行循环体,S=6+8=14,n=4

满足条件S<30,执行循环体,S=14+16=30,n=1

此时,不满足条件S<30,退出循环,输出n的值为1.

故选C.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.4、D【解析】

根据等差数列的通项公式,纵向观察三个式子的项的脚标关系,可巧解.【详解】由等差数列得:所以同理:故选D.【点睛】本题考查等差数列通项公式,关键纵向观察出脚标的特殊关系更妙,属于中档题.5、A【解析】

先求出和的值,再根据诱导公式即可得解.【详解】因为角的终边与单位圆的交点为,所以,,则.故选:A.【点睛】本题考查任意角三角函数值的求法,考查诱导公式的应用,属于基础题,6、D【解析】

A项中,需要看分母的正负;B项和C项中,已知两个数平方的大小只能比较出两个数绝对值的大小.【详解】A项中,若,则有,故A项错误;B项中,若,则,故B项错误;C项中,若则即,故C项错误;D项中,若,则一定有,故D项正确.故选:D【点睛】本题主要考查不等关系与不等式,属于基础题.7、A【解析】

设其中一段的长度为,可得出另一段长度为,根据题意得出的取值范围,再利用几何概型的概率公式可得出所求事件的概率.【详解】设其中一段的长度为,可得出另一段长度为,由于剪得两段绳有一段长度不小于,则或,可得或.由于,所以,或.由几何概型的概率公式可知,事件“剪得两段绳有一段长度不小于”的概率为,故选:A.【点睛】本题考查长度型几何概型概率公式的应用,解题时要将问题转化为区间型的几何概型来计算概率,考查分析问题以及运算求解能力,属于中等题.8、B【解析】

由数列的前项和求通项,再由数列的周期性及等比数列的前项和求解.【详解】因为,当时,得;当,且时,,不满足上式,∴,所以,当时,;当是偶数时,为整数,则,所以;故对于任意正整数,均有:因为,所以.因为为偶数,所以,而,所以.故选:B.【点睛】本题考查数列的函数概念与表示、余弦函数的性质、正弦函数的诱导公式以及数列求和,解题的关键是当时,,和的推导,本题属于难题.9、D【解析】设第一天织尺,第二天起每天比前一天多织尺,由已知得,,故选D.【方法点睛】本题主要考查等差数列的通项公式、等差数列的前项和公式,属于中档题.等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,另外,解等差数列问题要注意应用等差数列的性质()与前项和的关系.10、D【解析】

根据题意,求得,结合,即可求解,得到答案.【详解】由题意,正项等比数列满足,,即,,所以,又由,因为,所以.故选:D.【点睛】本题主要考查了的等比数列的通项公式,以及等比数列的前n项和公式的应用,其中解答中熟记等比数列的通项公式,以及等比数列的前n项和公式,合理运算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

设,,,则,,可得,再根据正弦函数的定义域和值域,求得函数的最值.【详解】解:函数,设,,则,,,,故当,即时,函数,故故答案为:;【点睛】本题主要考查求函数的值域,正弦函数的定义域和值域,体现了转化的数学思想,属于基础题.12、【解析】函数y=ax,y=xb,y=logcx的图象如图所示,由指数函数y=ax,x=2时,y∈(1,2);对数函数y=logcx,x=2,y∈(0,1);幂函数y=xb,x=2,y∈(1,2);可得a∈(1,2),b∈(0,1),c∈(2,+∞).可得b<a<c故答案为:b<a<c.13、【解析】正方体体积为8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π.故答案为:12π.点睛:设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为:.14、【解析】

利用两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数的性质得出结论.【详解】,由得,,时,.即所求减区间为.故答案为.【点睛】本题考查三角函数的单调性,解题时需把函数化为一个角一个三角函数形式,然后结合正弦函数的单调性求解.15、【解析】

在分式的分子和分母中同时除以,然后利用常见数列的极限可计算出所求极限值.【详解】由题意得.故答案为:.【点睛】本题考查数列极限的计算,熟悉一些常见数列的极限是解题的关键,考查计算能力,属于基础题.16、8【解析】

利用的代换,将写成,然后根据基本不等式求解最小值.【详解】因为(即取等号),所以最小值为.【点睛】已知,求解()的最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】

(1)利用同角三角函数间的关系式的应用,可求得cosα,sinβ,再利用两角差的正弦、余弦与正切公式即可求得cos(α﹣β)的值.(2)利用切化弦结合二倍角公式化简即可证明【详解】(1)∵sinα,cosβ,且α、β都是第二象限的角,∴cosα,sinβ,∴cos(α﹣β)=cosαcosβ+sinαsinβ;(2)得证【点睛】本题考查两角和与差的正弦、余弦与正切,考查同角三角函数间的关系式的应用,属于中档题.18、(1)(2)【解析】试题分析:(1)解法1:由题意利用待定系数法可得⊙C方程为.解法2:由题意结合几何关系确定圆心坐标和半径的长度可得⊙C的方程为.(2)解法1:利用圆心到直线的距离与圆的半径的关系得到关系k的不等式,求解不等式可得.解法2:联立直线与圆的方程,结合可得.试题解析:(1)解法1:设圆的方程为,则,所以⊙C方程为.解法2:由于AB的中点为,,则线段AB的垂直平分线方程为而圆心C必为直线与直线的交点,由解得,即圆心,又半径为,故⊙C的方程为.(2)解法1:因为直线与⊙C总有公共点,则圆心到直线的距离不超过圆的半径,即,将其变形得,解得.解法2:由,因为直线与⊙C总有公共点,则,解得.点睛:判断直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.19、(Ⅰ)(Ⅱ)在上单调递增,证明见解析【解析】

(1)函数的定义域为,利用奇函数的必要条件,,求出,再用奇函数的定义证明;(2)判断在上单调递增,用单调性的定义证明,任取,求出函数值,用作差法,证明即可.【详解】解:(Ⅰ)∵函数是奇函数,定义域为,∴,即,解之得,此时,为奇函数,;(Ⅱ)由(Ⅰ)知,,设,且,∵,∴,∴,即故在上单调递增.【点睛】本题考查函数奇偶性的应用,注意奇偶性必要条件的运用,减少计算量但要加以证明,考查函数单调性的证明,属于中档题.20、(1)();(2),的最大值是.【解析】试题分析:(1)运用题设和实际建立函数关系并确定定义域;(2)运用基本不等式求函数的最值和取得最值的条件.试题解析:(1)因为,,,由余弦定理,,解得,由,得.又,得,解得,所以的取值范围是.(2),,则,设,则.当且仅当即取等号,此时取等号,所以当时,的最大值是.考点:阅读理解能力和数学建模能力、基本不等式及在解决实际问题中的灵活运用.【易错点晴】应用题是江苏高考每年必考的重要题型之一,也是历届高考失分较多的题型.解答这类问题的关键是提高考生的阅读理解能力和数学建模能力,以及抽象概括能力.解答好这类问题要过:“审题、理解题意、建立数学模型、求解数学模型、作答”这五个重要环节,其中审题关要求反复阅读问题中提供的一些信息,并将其与学过的数学模型进行联系,为建构数学模

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论