2023-2024学年广东省华南师大附中、省实验中学、广雅中学、深圳高级中学四校高一下数学期末综合测试试题含解析_第1页
2023-2024学年广东省华南师大附中、省实验中学、广雅中学、深圳高级中学四校高一下数学期末综合测试试题含解析_第2页
2023-2024学年广东省华南师大附中、省实验中学、广雅中学、深圳高级中学四校高一下数学期末综合测试试题含解析_第3页
2023-2024学年广东省华南师大附中、省实验中学、广雅中学、深圳高级中学四校高一下数学期末综合测试试题含解析_第4页
2023-2024学年广东省华南师大附中、省实验中学、广雅中学、深圳高级中学四校高一下数学期末综合测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年广东省华南师大附中、省实验中学、广雅中学、深圳高级中学四校高一下数学期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数,,其中,.若,且的最小正周期大于,则()A., B.,C., D.,2.设为锐角,,若与共线,则角()A.15° B.30° C.45° D.60°3.函数图象向右平移个单位长度,所得图象关于原点对称,则在上的单调递增区间为()A. B. C. D.4.已知x,y∈R,且x>y>0,则()A. B.C. D.lnx+lny>05.一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.6.已知平面向量,且,则()A. B. C. D.7.如图,在中,,点在边上,且,则等于()A. B. C. D.8.已知,则的最小值为A.3 B.4 C.5 D.69.如图,为正方体,下面结论错误的是()A.异面直线与所成的角为45° B.平面C.平面平面 D.异面直线与所成的角为45°10.在中,角,,的对边分别为,,,若,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.等腰直角中,,CD是AB边上的高,E是AC边的中点,现将沿CD翻折成直二面角,则异面直线DE与AB所成角的大小为________.12.如图,在B处观测到一货船在北偏西方向上距离B点1千米的A处,码头C位于B的正东千米处,该货船先由A朝着C码头C匀速行驶了5分钟到达C,又沿着与AC垂直的方向以同样的速度匀速行驶5分钟后到达点D,此时该货船到点B的距离是________千米.13.若无穷等比数列的各项和等于,则的取值范围是_____.14.已知无穷等比数列的首项为,公比为q,且,则首项的取值范围是________.15.函数的最小正周期为________16.将正偶数按下表排列成列,每行有个偶数的蛇形数列(规律如表中所示),则数字所在的行数与列数分别是_______________.第列第列第列第列第列第行第行第行第行……三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知中,.设,,它的内接正方形的一边在斜边上,、分别在、上.假设的面积为,正方形的面积为.(Ⅰ)用表示的面积和正方形的面积;(Ⅱ)设,试求的最大值,并判断此时的形状.18.已知函数,为实数.(1)若对任意,都有成立,求实数的值;(2)若,求函数的最小值.19.已知向量是夹角为的单位向量,,(1)求;(2)当m为何值时,与平行?20.已知等比数列的前项和为,公比,,.(1)求等比数列的通项公式;(2)设,求的前项和.21.如图,以Ox为始边作角与(),它们终边分别单位圆相交于点、,已知点的坐标为.(1)若,求角的值;(2)若·,求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据周期以及最值点和平衡位置点先分析的值,然后带入最值点计算的值.【详解】因为,,所以,则,所以,即,故;则,代入可得:且,所以.故选B.【点睛】(1)三角函数图象上,最值点和平衡位置的点之间相差奇数个四分之一周期的长度;(2)计算的值时,注意选用最值点或者非特殊位置点,不要选用平衡位置点(容易多解).2、B【解析】由题意,,又为锐角,∴.故选B.3、A【解析】

根据三角函数的图象平移关系结合函数关于原点对称的性质求出的值,结合函数的单调性进行求解即可.【详解】函数图象向右平移个单位长度,得到,所得图象关于原点对称,则,得,,∵,∴当时,,则,由,,得,,即函数的单调递增区间为,,∵,∴当时,,即,即在上的单调递增区间为,故选:A.【点睛】本题主要考查三角函数的图象和性质,求出函数的解析式结合三角函数的单调性是解决本题的关键.4、A【解析】

结合选项逐个分析,可选出答案.【详解】结合x,y∈R,且x>y>0,对选项逐个分析:对于选项A,,,故A正确;对于选项B,取,,则,故B不正确;对于选项C,,故C错误;对于选项D,,当时,,故D不正确.故选A.【点睛】本题考查了不等式的性质,属于基础题.5、D【解析】

由几何体的三视图得该几何体是一个底面半径,高的扣在平面上的半圆柱,由此能求出该几何体的体积【详解】由几何体的三视图得:

该几何体是一个底面半径,高的放在平面上的半圆柱,如图,

故该几何体的体积为:故选:D【点睛】本题考查几何体的体积的求法,考查几何体的三视图等基础知识,考查推理能力与计算能力,是中档题.6、B【解析】试题分析:因为,,且,所以,,故选B.考点:1、平面向量坐标运算;2、平行向量的性质.7、C【解析】

在中,由余弦定理求得,在中,利用正弦定理求得BD,则可得CD.【详解】在中,由余弦定理可得.又,故为直角三角形,故.因为,且为锐角,故.由利用正弦定理可得,代值可得,故.故选:C.【点睛】本题考查利用正弦定理以及余弦定理解三角形,属于综合基础题.8、C【解析】

由,得,则,利用基本不等式,即可求解.【详解】由题意,因为,则,所以,当且仅当时,即时取等号,所以的最小值为5,故选C.【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.9、A【解析】

根据正方体性质,依次证明线面平行和面面平行,根据直线的平行关系求异面直线的夹角.【详解】根据正方体性质,,所以异面直线与所成的角等于,,,所以不等于45°,所以A选项说法不正确;,四边形为平行四边形,,平面,平面,所以平面,所以B选项说法正确;同理可证:平面,是平面内两条相交直线,所以平面平面,所以C选项说法正确;,异面直线与所成的角等于,所以D选项说法正确.故选:A【点睛】此题考查线面平行和面面平行的判定,根据平行关系求异面直线的夹角,考查空间线线平行和线面平行关系的掌握10、A【解析】

由正弦定理求得sinA,利用同角三角函数的基本关系求得cosA,求出sinB=sin(120°+A)的值,可得

的值.【详解】△ABC中,由正弦定理可得

,∴

,∴sinA=

,cosA=.

sinB=sin(120°+A)=

•+•=

,再由正弦定理可得

=

=

故答案为

A.【点睛】本题考查正弦定理,两角和与差的正弦公式的应用,求出sinB是解题的关键,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

取的中点,连接,则与所成角即为与所成角,根据已知可得,,可以判断三角形为等边三角形,进而求出异面直线直线DE与AB所成角.【详解】取的中点,连接,则,直线DE与AB所成角即为与所成角,,,,,,即三角形为等边三角形,异面直线DE与AB所成角的大小为.故答案为:【点睛】本题考查立体几何中的翻折问题,考查了异面直线所成的角,考查了学生的空间想象能力,属于基础题.12、3【解析】

先在中,由余弦定理算出和,然后在中由余弦定理即可求出.【详解】由题意可得,在中,所以由余弦定理得:即,所以因为所以所以所以在中有:即故答案为:3【点睛】本题考查三角形的解法,余弦定理的应用,是基本知识的考查.13、.【解析】

根据题意可知,,从而得出,再由,即可求出的取值范围.【详解】解:由题意可知,,且,,,,或,故的取值范围是,故答案为:.【点睛】本题主要考查等比数列的极限问题,解题时要熟练掌握无穷等比数列的极限和,属于基础题.14、【解析】

根据极限存在得出,对分、和三种情况讨论得出与之间的关系,可得出的取值范围.【详解】由于,则.①当时,则,;②当时,则,;③当时,,解得.综上所述:首项的取值范围是,故答案为:.【点睛】本题考查极限的应用,要结合极限的定义得出公比的取值范围,同时要对公比的取值范围进行分类讨论,考查分类讨论思想的应用,属于中等题.15、【解析】

根据的最小正周期判断即可.【详解】因为的最小正周期均为,故的最小正周期为.故答案为:【点睛】本题主要考查了正切余切函数的周期,属于基础题型.16、行列【解析】

设位于第行第列,观察表格中数据的规律,可得出,由此可求出的值,再观察奇数行和偶数行最小数的排列,可得出的值,由此可得出结果.【详解】设位于第行第列,由表格中的数据可知,第行最大的数为,则,解得,由于第行最大的数为,所以,是表格中第行最小的数,由表格中的规律可知,奇数行最小的数放在第列,那么.因此,位于表格中第行第列.故答案为:行列.【点睛】本题考查归纳推理,解题的关键就是要结合表格中数据所呈现的规律来进行推理,考查推理能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ),;,(Ⅱ)最大值为;为等腰直角三角形【解析】

(Ⅰ)根据直角三角形,底面积乘高是面积;然后考虑正方形的边长,求出边长之后,即可表示正方形面积;(Ⅱ)化简的表达式,利用基本不等式求最值,注意取等号的条件.【详解】解:(Ⅰ)∵在中,∴,.∴∴,设正方形边长为,则,,∴.∴,∴,(Ⅱ)解:由(Ⅰ)可得,令,∵在区间上是减函数∴当时,取得最小值,即取得最大值。∴的最大值为此时∴为等腰直角三角形【点睛】(1)函数的实际问题中,不仅要根据条件列出函数解析式时,同时还要注意定义域;(2)求解函数的最值的时候,当取到最值时,一定要添加增加取等号的条件.18、(1);(2).【解析】

(1)根据二次函数的解析式写出对称轴即可;(2)根据对称轴是否在定义域内进行分类讨论,由二次函数的图象可分别得出函数的最小值.【详解】(1)对任意,都有成立,则函数的对称轴为,即,解得实数的值为.(2)二次函数,开口向上,对称轴为①若,即时,函数在上单调递增,的最小值为;②若,即时,函数在上单调递减,的最小值为;③若,即时,函数在上单调递减,在上单调递增,的最小值为;综上可得:【点睛】本题考查二次函数的图象与性质,应用了分类讨论的思想,属于中档题.19、(1)1;(2)﹣6【解析】

(1)利用单位向量的定义,直接运算即可;(2)利用,有,得出,然后列方程求解即可【详解】解:(1);(2)当,则存在实数使,所以不共线,得,【点睛】本题考查向量平行的定义,注意列方程运算即可,属于简单题20、(1)(2)【解析】

(1)将已知两式作差,利用等比数列的通项公式,可得公比,由等比数列的求和可得首项,进而得到所求通项公式;(2)求得bn=n,,由裂项相消求和可得答案.【详解】(1)等比数列的前项和为,公比,①,②.②﹣①,得,则,又,所以,因为,所以,所以,所以;(2),所以前项和.【点睛】裂项相消法适用于形如(其中是各项均

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论