2010年福建高考理科数学试卷及答案解析(文字版)_第1页
2010年福建高考理科数学试卷及答案解析(文字版)_第2页
2010年福建高考理科数学试卷及答案解析(文字版)_第3页
2010年福建高考理科数学试卷及答案解析(文字版)_第4页
2010年福建高考理科数学试卷及答案解析(文字版)_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE7/142010年普通高等学校招生全国统一考试数学(理工农医类)(福建卷及详解)第I卷(选择题共60分)一、选择题:本大题共12小题。每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。1.的值等于()A.B.C.D.2.以抛物线的焦点为圆心,且过坐标原点的圆的方程为()A.B.C.D.3.设等差数列的前n项和为,若,,则当取最小值时,n等于A.6B.7C.8D.94.函数的零点个数为()A.0B.15.阅读右图所示的程序框图,运行相应的程序,输出的值等于()A.2B.3C.4D.56.如图,若是长方体被平面截去几何体后得到的几何体,其中E为线段上异于的点,F为线段上异于的点,且∥,则下列结论中不正确的是()A.∥B.四边形是矩形C.是棱柱D.是棱台7.若点O和点分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为()A.B.C.D.8.设不等式组所表示的平面区域是,平面区域是与关于直线对称,对于中的任意一点A与中的任意一点B,的最小值等于()A.B.4C.D.29.对于复数,若集合具有性质“对任意,必有”,则当时,等于()A.1B.-1C.0D.10.对于具有相同定义域D的函数和,若存在函数为常数),对任给的正数m,存在相应的,使得当且时,总有,则称直线为曲线和的“分渐近线”.给出定义域均为D=的四组函数如下:①,;②,;③,;④,.其中,曲线和存在“分渐近线”的是()A.①④B.②③C.②④D.③④二、填空题:11.在等比数列中,若公比,且前3项之和等于21,则该数列的通项公式.12.若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于.13.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮。假设某选手正确回答每个问题的概率都是,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于。14.已知函数和的图象的对称轴完全相同。若,则的取值范围是。15.已知定义域为的函数满足:①对任意,恒有成立;当时,。给出如下结论:①对任意,有;②函数的值域为;③存在,使得;④“函数在区间上单调递减”的充要条件是“存在,使得”。其中所有正确结论的序号是。三、解答题:16.(本小题满分13分)设是不等式的解集,整数。(1)记使得“成立的有序数组”为事件A,试列举A包含的基本事件;(2)设,求的分布列及其数学期望。17.(本小题满分13分)已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。(1)求椭圆C的方程;(2)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。18.(本小题满分13分)如图,圆柱内有一个三棱柱,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O直径。(Ⅰ)证明:平面平面;(Ⅱ)设AB=,在圆柱内随机选取一点,记该点取自于三棱柱内的概率为。(i)当点C在圆周上运动时,求的最大值;(ii)记平面与平面所成的角为,当取最大值时,求的值。19.(本小题满分13分)。,轮船位于港口O北偏西且与该港口相距20海里的A处,并以30海里/小时的航行速度沿正东方向匀速行驶。假设该小船沿直线方向以海里/小时的航行速度匀速行驶,经过t小时与轮船相遇。(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由。20.(本小题满分14分)(Ⅰ)已知函数,。(i)求函数的单调区间;(ii)证明:若对于任意非零实数,曲线C与其在点处的切线交于另一点,曲线C与其在点处的切线交于另一点,线段(Ⅱ)对于一般的三次函数(Ⅰ)(ii)的正确命题,并予以证明。21.本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题做答,满分14分。如果多做,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。(1)(本小题满分7分)选修4-2:矩阵与变换已知矩阵M=,,且,(Ⅰ)求实数的值;(Ⅱ)求直线在矩阵M所对应的线性变换下的像的方程。(2)(本小题满分7分)选修4-4:坐标系与参数方程在直角坐标系xoy中,直线的参数方程为(t为参数)。在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为。(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|。(3)(本小题满分7分)选修4-5:不等式选讲已知函数。(Ⅰ)若不等式的解集为,求实数的值;(Ⅱ)在(Ⅰ)的条件下,若对一切实数x恒成立,求实数m的取值范围。2010年普通高等学校招生全国统一考试数学(理工农医类)(福建卷及详解)一、选择题:1.【解析】原式=,答案A2.【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为,故所求圆的方程为,即答案D3.【解析】设该数列的公差为,则,解得,所以,所以当时,取最小值。答案A4.【解析】当时,令解得;当时,令解得,所以已知函数有两个零点,答案C5.【解析】由程序框图可知,该框图的功能是输出使和时的的值加1,因为,,所以当时,计算到,故输出的是4答案C6.【解析】因为∥,∥,所以∥,又平面,所以∥平面,又平面,平面平面=,所以∥,故∥∥,所以选项A、C正确;因为平面,∥,所以平面,又平面,故,所以选项B也正确答案D7.【解析】因为是已知双曲线的左焦点,所以,即,所以双曲线方程为,设点P,则有,解得,因为,,所以=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值,故的取值范围是答案B8.【解析】由题意知,所求的的最小值,即为区域中的点到直线的距离的最小值的两倍,画出已知不等式表示的平面区域,如图所示,可看出点(1,1)到直线的距离最小,故的最小值为答案B9.【解析】由题意,可取,所以答案B10.【解析】要透过现象看本质,存在分渐近线的充要条件是时,。对于eq\o\ac(○,1),当时便不符合,所以eq\o\ac(○,1)不存在;对于eq\o\ac(○,2),肯定存在分渐近线,因为当时,;对于eq\o\ac(○,3),,设且,所以当时越来愈大,从而会越来越小,不会趋近于0,所以不存在分渐近线;eq\o\ac(○,4)当时,,因此存在分渐近线。故,存在分渐近线的是eq\o\ac(○,2)eq\o\ac(○,4)答案C二、填空题:11.【解析】由题意知,解得,所以通项。答案12.【解析】由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为,侧面积为,所以其表面积为。答案13.【解析】恰好回答四道,且连续两道答对停止答题,则尽可能是第一道答对,第二道答错、三、四道答对或者是前两道答错,后两道答对的情况,所以【答案】14、【解析】由题意知,,因为,所以,由三角函数图象知:的最小值为,最大值为,所以的取值范围是。答案15、【解析】eq\o\ac(○,1),正确;eq\o\ac(○,2)取,则;,从而,其中,,从而,正确;eq\o\ac(○,3),假设存在使,即存在,又,变化如下:2,4,8,16,32,……,显然不存在,所以该命题错误;eq\o\ac(○,4)根据前面的分析容易知道该选项正确;综合有正确的序号是eq\o\ac(○,1)eq\o\ac(○,2)eq\o\ac(○,4).答案①②④三、解答题:16、【解析】(1)由得,即,由于整数且,所以A包含的基本事件为。(2)由于的所有不同取值为所以的所有不同取值为,且有,,,,故的分布列为0149P所以=。17、【解析】(1)依题意,可设椭圆C的方程为,且可知左焦点为F(-2,0),从而有,解得,又,所以,故椭圆C的方程为。(2)假设存在符合题意的直线,其方程为,由得,因为直线与椭圆有公共点,所以有,解得,另一方面,由直线OA与的距离4可得:,从而,由于,所以符合题意的直线不存在。18、【解析】(Ⅰ)因为平面ABC,平面ABC,所以,因为AB是圆O直径,所以,又,所以平面,而平面,所以平面平面。(Ⅱ)(i)设圆柱的底面半径为,则AB=,故三棱柱的体积为=,又因为,所以=,当且仅当时等号成立,从而,而圆柱的体积,故=当且仅当,即时等号成立,所以的最大值是。(ii)由(i)可知,取最大值时,,于是以O为坐标原点,建立空间直角坐标系(如图),则C(r,0,0),B(0,r,0),(0,r,2r),因为平面,所以是平面的一个法向量,设平面的法向量,由,故,取得平面的一个法向量为,因为,所以。19、【解析】如图,由(1)得而小艇的最高航行速度只能达到30海里/小时,故轮船与小艇不可能在A、C(包含C)的任意位置相遇,设,OD=,由于从出发到相遇,轮船与小艇所需要的时间分别为和,所以,解得,从而值,且最小值为,于是当取得最小值,且最小值为。此时,在中,,故可设计航行方案如下:航行方向为北偏东,航行速度为30海里/小时,小艇能以最短时间与轮船相遇。20、【解析】(Ⅰ)(i)由得=,当和时,;当时,,因此,的单调递增区间为和,单调递减区间为。(ii)曲线C与其在点处的切线方程为得,即,解得,进而有,用代替,重复上述计算过程,可得和,又,所以因此有。(Ⅱ)记函数的图象为曲线,类似于(Ⅰ)(ii)的正确命题为:若对任意不等式的实数,曲线与其在点处的切线交于另一点,曲线C与其在点处的切线交于另一点,线段证明如下:因为平移变换不改变面积的大小,故可将曲线的对称中心平移至坐标原点,因而不妨设,类似(i)(ii)的计算可得,故。21、(1)【解析】(Ⅰ)由题设得,解得;(Ⅱ)因为矩阵M所对应的线性变换将直线变成直线(或点),所以可取直线上的两(0,0),(1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论