版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
海南省乐东思源高中2024年高三第二次模拟考试数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.小王因上班繁忙,来不及做午饭,所以叫了外卖.假设小王和外卖小哥都在12:00~12:10之间随机到达小王所居住的楼下,则小王在楼下等候外卖小哥的时间不超过5分钟的概率是()A. B. C. D.2.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,它历史悠久,风格独特,神兽人们喜爱.下图即是一副窗花,是把一个边长为12的大正方形在四个角处都剪去边长为1的小正方形后剩余的部分,然后在剩余部分中的四个角处再剪出边长全为1的一些小正方形.若在这个窗花内部随机取一个点,则该点不落在任何一个小正方形内的概率是()A. B. C. D.3.已知变量,满足不等式组,则的最小值为()A. B. C. D.4.点为不等式组所表示的平面区域上的动点,则的取值范围是()A. B. C. D.5.复数满足,则复数等于()A. B. C.2 D.-26.在原点附近的部分图象大概是()A. B.C. D.7.若两个非零向量、满足,且,则与夹角的余弦值为()A. B. C. D.8.设i是虚数单位,若复数是纯虚数,则a的值为()A. B.3 C.1 D.9.已知椭圆的短轴长为2,焦距为分别是椭圆的左、右焦点,若点为上的任意一点,则的取值范围为()A. B. C. D.10.已知抛物线经过点,焦点为,则直线的斜率为()A. B. C. D.11.设集合,,则()A. B.C. D.12.正三棱柱中,,是的中点,则异面直线与所成的角为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若直线与直线交于点,则长度的最大值为____.14.已知双曲线的左焦点为,、为双曲线上关于原点对称的两点,的中点为,的中点为,的中点为,若,且直线的斜率为,则__________,双曲线的离心率为__________.15.已知,满足约束条件则的最小值为__________.16.如图所示,在△ABC中,AB=AC=2,,,AE的延长线交BC边于点F,若,则____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论函数的极值;(2)记关于的方程的两根分别为,求证:.18.(12分)已知是抛物线:的焦点,点在上,到轴的距离比小1.(1)求的方程;(2)设直线与交于另一点,为的中点,点在轴上,.若,求直线的斜率.19.(12分)在直角坐标系中,曲线的参数方程为(为参数,将曲线经过伸缩变换后得到曲线.在以原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)说明曲线是哪一种曲线,并将曲线的方程化为极坐标方程;(2)已知点是曲线上的任意一点,又直线上有两点和,且,又点的极角为,点的极角为锐角.求:①点的极角;②面积的取值范围.20.(12分)已知函数,,.函数的导函数在上存在零点.求实数的取值范围;若存在实数,当时,函数在时取得最大值,求正实数的最大值;若直线与曲线和都相切,且在轴上的截距为,求实数的值.21.(12分)设函数,其中是自然对数的底数.(Ⅰ)若在上存在两个极值点,求的取值范围;(Ⅱ)若,函数与函数的图象交于,且线段的中点为,证明:.22.(10分)若数列满足:对于任意,均为数列中的项,则称数列为“数列”.(1)若数列的前项和,,试判断数列是否为“数列”?说明理由;(2)若公差为的等差数列为“数列”,求的取值范围;(3)若数列为“数列”,,且对于任意,均有,求数列的通项公式.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
设出两人到达小王的时间,根据题意列出不等式组,利用几何概型计算公式进行求解即可.【详解】设小王和外卖小哥到达小王所居住的楼下的时间分别为,以12:00点为开始算起,则有,在平面直角坐标系内,如图所示:图中阴影部分表示该不等式组的所表示的平面区域,所以小王在楼下等候外卖小哥的时间不超过5分钟的概率为:.故选:C【点睛】本题考查了几何概型中的面积型公式,考查了不等式组表示的平面区域,考查了数学运算能力.2、D【解析】
由几何概型可知,概率应为非小正方形面积与窗花面积的比,即可求解.【详解】由题,窗花的面积为,其中小正方形的面积为,所以所求概率,故选:D【点睛】本题考查几何概型的面积公式的应用,属于基础题.3、B【解析】
先根据约束条件画出可行域,再利用几何意义求最值.【详解】解:由变量,满足不等式组,画出相应图形如下:可知点,,在处有最小值,最小值为.故选:B.【点睛】本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.4、B【解析】
作出不等式对应的平面区域,利用线性规划的知识,利用的几何意义即可得到结论.【详解】不等式组作出可行域如图:,,,的几何意义是动点到的斜率,由图象可知的斜率为1,的斜率为:,则的取值范围是:,,.故选:.【点睛】本题主要考查线性规划的应用,根据目标函数的几何意义结合斜率公式是解决本题的关键.5、B【解析】
通过复数的模以及复数的代数形式混合运算,化简求解即可.【详解】复数满足,∴,故选B.【点睛】本题主要考查复数的基本运算,复数模长的概念,属于基础题.6、A【解析】
分析函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确选项.【详解】令,可得,即函数的定义域为,定义域关于原点对称,,则函数为奇函数,排除C、D选项;当时,,,则,排除B选项.故选:A.【点睛】本题考查利用函数解析式选择函数图象,一般要分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题.7、A【解析】
设平面向量与的夹角为,由已知条件得出,在等式两边平方,利用平面向量数量积的运算律可求得的值,即为所求.【详解】设平面向量与的夹角为,,可得,在等式两边平方得,化简得.故选:A.【点睛】本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.8、D【解析】
整理复数为的形式,由复数为纯虚数可知实部为0,虚部不为0,即可求解.【详解】由题,,因为纯虚数,所以,则,故选:D【点睛】本题考查已知复数的类型求参数范围,考查复数的除法运算.9、D【解析】
先求出椭圆方程,再利用椭圆的定义得到,利用二次函数的性质可求,从而可得的取值范围.【详解】由题设有,故,故椭圆,因为点为上的任意一点,故.又,因为,故,所以.故选:D.【点睛】本题考查椭圆的几何性质,一般地,如果椭圆的左、右焦点分别是,点为上的任意一点,则有,我们常用这个性质来考虑与焦点三角形有关的问题,本题属于基础题.10、A【解析】
先求出,再求焦点坐标,最后求的斜率【详解】解:抛物线经过点,,,,故选:A【点睛】考查抛物线的基础知识及斜率的运算公式,基础题.11、D【解析】
利用一元二次不等式的解法和集合的交运算求解即可.【详解】由题意知,集合,,由集合的交运算可得,.故选:D【点睛】本题考查一元二次不等式的解法和集合的交运算;考查运算求解能力;属于基础题.12、C【解析】
取中点,连接,,根据正棱柱的结构性质,得出//,则即为异面直线与所成角,求出,即可得出结果.【详解】解:如图,取中点,连接,,由于正三棱柱,则底面,而底面,所以,由正三棱柱的性质可知,为等边三角形,所以,且,所以平面,而平面,则,则//,,∴即为异面直线与所成角,设,则,,,则,∴.故选:C.【点睛】本题考查通过几何法求异面直线的夹角,考查计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据题意可知,直线与直线分别过定点,且这两条直线互相垂直,由此可知,其交点在以为直径的圆上,结合图形求出线段的最大值即可.【详解】由题可知,直线可化为,所以其过定点,直线可化为,所以其过定点,且满足,所以直线与直线互相垂直,其交点在以为直径的圆上,作图如下:结合图形可知,线段的最大值为,因为为线段的中点,所以由中点坐标公式可得,所以线段的最大值为.故答案为:【点睛】本题考查过交点的直线系方程、动点的轨迹问题及点与圆的位置关系;考查数形结合思想和运算求解能力;根据圆的定义得到交点在以为直径的圆上是求解本题的关键;属于中档题.14、【解析】
设,,根据中点坐标公式可得坐标,利用可得到点坐标所满足的方程,结合直线斜率可求得,进而求得;将点坐标代入双曲线方程,结合焦点坐标可求得,进而得到离心率.【详解】左焦点为,双曲线的半焦距.设,,,,,,即,,即,又直线斜率为,即,,,,在双曲线上,,即,结合可解得:,,离心率.故答案为:;.【点睛】本题考查直线与双曲线的综合应用问题,涉及到直线截双曲线所得线段长度的求解、双曲线离心率的求解问题;关键是能够通过设点的方式,结合直线斜率、垂直关系、点在双曲线上来构造方程组求得所需变量的值.15、【解析】
画出可行域,通过平移基准直线到可行域边界位置,由此求得目标函数的最小值.【详解】画出可行域如下图所示,由图可知:可行域是由三点,,构成的三角形及其内部,当直线过点时,取得最小值.故答案为:【点睛】本小题主要考查利用线性规划求目标函数的最值,考查数形结合的数学思想方法,属于基础题.16、【解析】
过点做,可得,,由可得,可得,代入可得答案.【详解】解:如图,过点做,易得:,,,故,可得:,同理:,,可得,,由,可得,可得:,可得:,,故答案为:.【点睛】本题主要考查平面向量的线性运算和平面向量的数量积,由题意作出是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】
(1)对函数求导,对参数讨论,得函数单调区间,进而求出极值;(2)是方程的两根,代入方程,化简换元,构造新函数利用函数单调性求最值可解.【详解】(1)依题意,;若,则,则函数在上单调递增,此时函数既无极大值,也无极小值;若,则,令,解得,故当时,,单调递增;当时,,单调递减,此时函数有极大值,无极小值;若,则,令,解得,故当时,,单调递增;当时,,单调递减,此时函数有极大值,无极小值;(2)依题意,,则,,故,;要证:,即证,即证:,即证,设,只需证:,设,则,故在上单调递增,故,即,故.【点睛】本题考查函数极值及利用导数证明二元不等式.证明二元不等式常用方法是转化为证明一元不等式,再转化为函数最值问题.利用导数证明不等式的基本方法:(1)若与的最值易求出,可直接转化为证明;(2)若与的最值不易求出,可构造函数,然后根据函数的单调性或最值,证明.18、(1)(2)【解析】
(1)由抛物线定义可知,解得,故抛物线的方程为;(2)设直线:,联立,利用韦达定理算出的中点,又,所以直线的方程为,求出,利用求解即可.【详解】(1)设的准线为,过作于,则由抛物线定义,得,因为到的距离比到轴的距离大1,所以,解得,所以的方程为(2)由题意,设直线方程为,由消去,得,设,,则,所以,又因为为的中点,点的坐标为,直线的方程为,令,得,点的坐标为,所以,解得,所以直线的斜率为.【点睛】本题主要考查抛物线的定义,直线与抛物线的位置关系等基础知识,考查学生的运算求解能力.涉及抛物线的弦的中点,斜率问题时,可采用韦达定理或“点差法”求解.19、(1)曲线为圆心在原点,半径为2的圆.的极坐标方程为(2)①②【解析】
(1)求得曲线伸缩变换后所得的参数方程,消参后求得的普通方程,判断出对应的曲线,并将的普通方程转化为极坐标方程.(2)①将的极角代入直线的极坐标方程,由此求得点的极径,判断出为等腰三角形,求得直线的普通方程,由此求得,进而求得,从而求得点的极角.②解法一:利用曲线的参数方程,求得曲线上的点到直线的距离的表达式,结合三角函数的知识求得的最小值和最大值,由此求得面积的取值范围.解法二:根据曲线表示的曲线,利用圆的几何性质求得圆上的点到直线的距离的最大值和最小值,进而求得面积的取值范围.【详解】(1)因为曲线的参数方程为(为参数),因为则曲线的参数方程所以的普通方程为.所以曲线为圆心在原点,半径为2的圆.所以的极坐标方程为,即.(2)①点的极角为,代入直线的极坐标方程得点极径为,且,所以为等腰三角形,又直线的普通方程为,又点的极角为锐角,所以,所以,所以点的极角为.②解法1:直线的普通方程为.曲线上的点到直线的距离.当,即()时,取到最小值为.当,即()时,取到最大值为.所以面积的最大值为;所以面积的最小值为;故面积的取值范围.解法2:直线的普通方程为.因为圆的半径为2,且圆心到直线的距离,因为,所以圆与直线相离.所以圆上的点到直线的距离最大值为,最小值为.所以面积的最大值为;所以面积的最小值为;故面积的取值范围.【点睛】本小题考查坐标变换,极径与极角;直线,圆的极坐标方程,圆的参数方程,直线的极坐标方程与普通方程,点到直线的距离等.考查数学运算能力,包括运算原理的理解与应用、运算方法的选择与优化、运算结果的检验与改进等.也兼考了数学抽象素养、逻辑推理、数学运算、直观想象等核心素养.20、;4;12.【解析】
由题意可知,,求导函数,方程在区间上有实数解,求出实数的取值范围;由,则,分步讨论,并利用导函数在函数的单调性的研究,得出正实数的最大值;设直线与曲线的切点为,因为,所以切线斜率,切线方程为,设直线与曲线的切点为,因为,所以切线斜率,即切线方程为,整理得.所以,求得,设,则,所以在上单调递增,最后求出实数的值.【详解】由题意可知,,则,即方程在区间上有实数解,解得;因为,则,①当,即时,恒成立,所以在上单调递增,不符题意;②当时,令,解得:,当时,,单调递增,所以不存在,使得在上的最大值为,不符题意;③当时,,解得:,且当时,,当时,,所以在上单调递减,在上单调递增,若,则在上单调递减,所以,若,则上单调递减,在上单调递增,由题意可知,,即,整理得,因为存在,符合上式,所以,解得,综上,的最大值为4;设直线与曲线的切点为,因为,所以切线斜率,即切线方程整理得:由题意可知,,即,即,解得所以切线方程为,设直线与曲线的切点为,因为,所以切线斜率,即切线方程为,整理得.所以,消去,整理得,且因为,解得,设,则,所以在上单调递增,因为,所以,所以,即.【点睛】本题主要考查导数在函数中的研究,导数的几何意义,属于难题.21、(Ⅰ);(Ⅱ)详见解析.【解析】
(Ⅰ)依题意在上存在两个极值点,等价于在有两个不等实根,由参变分类可得,令,利用导数研究的单调性、极值,从而得到参数的取值范围;(Ⅱ)由题解得,,要证成立,只需证:,即:,只需证:,设,即证:,再分别证明,即可;【详解】解:(Ⅰ)由题意可知,,在上存
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司综合管理部工作总结及2025年工作计划
- 公司部门人员工作计划范文书
- 2025幼儿园学期工作计划表
- 一:主席团工作计划
- 2025年秋季幼儿园小班工作计划
- 人事年度工作计划范文
- 学校班集体工作计划报告写作
- 幼儿园春季学期大班工作计划
- 《多变的价格》课件
- 《型数控系统简介》课件
- 《物联网工程导论》课件 项目5 智慧小区系统集成架构设计(6学时)
- 2024高考政治真题-哲学-汇集(解析版)
- 急诊与灾难医学智慧树知到期末考试答案章节答案2024年湖南师范大学
- 消化内科健康教育手册
- 学校关于意识形态工作总结
- 医院保安服务应急预案
- 幼儿园大班师德师风案例及分析
- 2023-2024年《个人垫资合同样本范本模板》
- 项目工程师个人工作总结
- 第四单元 美洲乐声-《红河谷》课件 2023-2024学年人音版初中音乐七年级下册
- 学习任务群视域下小学语文整本书阅读教学策略
评论
0/150
提交评论