版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市密云区中考五模数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.的值等于()A. B. C. D.2.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.3.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学计数法表示为()A. B. C. D.4.下列式子一定成立的是()A.2a+3a=6a B.x8÷x2=x4C. D.(﹣a﹣2)3=﹣5.某排球队名场上队员的身高(单位:)是:,,,,,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小 B.平均数变小,方差变大C.平均数变大,方差变小 D.平均数变大,方差变大6.在,,,这四个数中,比小的数有()个.A. B. C. D.7.下列判断错误的是()A.对角线相等的四边形是矩形B.对角线相互垂直平分的四边形是菱形C.对角线相互垂直且相等的平行四边形是正方形D.对角线相互平分的四边形是平行四边形8.如图,右侧立体图形的俯视图是()A.B.C.D.9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=(k<0)的图象经过点B,则k的值为()A.﹣12 B.﹣32 C.32 D.﹣3610.人的头发直径约为0.00007m,这个数据用科学记数法表示()A.0.7×10﹣4B.7×10﹣5C.0.7×104D.7×105二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,小红作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2,B2,C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积,用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第8个正△A8B8C8的面积是_____.12.若分式x-113.下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第根图形需要____________根火柴.14.已知一个多边形的每一个内角都是,则这个多边形是_________边形.15.如图,若∠1+∠2=180°,∠3=110°,则∠4=.16.如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是_____.三、解答题(共8题,共72分)17.(8分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元求甲、乙型号手机每部进价为多少元?该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值18.(8分)已知抛物线的开口向上顶点为P(1)若P点坐标为(4,一1),求抛物线的解析式;(2)若此抛物线经过(4,一1),当-1≤x≤2时,求y的取值范围(用含a的代数式表示)(3)若a=1,且当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,求b的值19.(8分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=1.求抛物线的函数表达式.当t为何值时,矩形ABCD的周长有最大值?最大值是多少?保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.20.(8分)某市飞翔航模小队,计划购进一批无人机.已知3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元.(1)求一台A型无人机和一台B型无人机的售价各是多少元?(2)该航模小队一次购进两种型号的无人机共50台,并且B型无人机的数量不少于A型无人机的数量的2倍.设购进A型无人机x台,总费用为y元.①求y与x的关系式;②购进A型、B型无人机各多少台,才能使总费用最少?21.(8分)如图,在△ABC中,AB=AC=1,BC=5-1(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.22.(10分)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:排球109.59.510899.5971045.5109.59.510篮球9.598.58.5109.510869.5109.598.59.56整理、描述数据:按如下分数段整理、描述这两组样本数据:(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格)分析数据:两组样本数据的平均数、中位数、众数如下表所示:项目平均数中位数众数排球8.759.510篮球8.819.259.5得出结论:(1)如果全校有160人选择篮球项目,达到优秀的人数约为_________人;(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.你同意_______的看法,理由为____________________________.(至少从两个不同的角度说明推断的合理性)23.(12分)如图1,在直角梯形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,过点C作CE⊥BP交直线BP于E.(1)若ABBC=3(2)若AB=BC.①如图2,当点P与E重合时,求PDPC②如图3,设∠DAP的平分线AF交直线BP于F,当CE=1,PDPC24.如图所示,小王在校园上的A处正面观测一座教学楼墙上的大型标牌,测得标牌下端D处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该标牌上端C处的仰角为45°.若该楼高为16.65m,小王的眼睛离地面1.65m,大型标牌的上端与楼房的顶端平齐.求此标牌上端与下端之间的距离(≈1.732,结果精确到0.1m).
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题解析:根据特殊角的三角函数值,可知:故选C.2、A【解析】试题分析:几何体的主视图有2列,每列小正方形数目分别为2,1.故选A.考点:三视图视频3、A【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】数据0.000000007用科学记数法表示为7×10-1.故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、D【解析】
根据合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则进行计算即可.【详解】解:A:2a+3a=(2+3)a=5a,故A错误;B:x8÷x2=x8-2=x6,故B错误;C:=,故C错误;D:(-a-2)3=-a-6=-,故D正确.故选D.【点睛】本题考查了合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则.其中指数为分数的情况在初中阶段很少出现.5、A【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为==188,方差为S2==;换人后6名队员身高的平均数为==187,方差为S2==∵188>187,>,∴平均数变小,方差变小,故选:A.点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6、B【解析】
比较这些负数的绝对值,绝对值大的反而小.【详解】在﹣4、﹣、﹣1、﹣这四个数中,比﹣2小的数是是﹣4和﹣.故选B.【点睛】本题主要考查负数大小的比较,解题的关键时负数比较大小时,绝对值大的数反而小.7、A【解析】
利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项.【详解】解:、对角线相等的四边形是矩形,错误;、对角线相互垂直平分的四边形是菱形,正确;、对角线相互垂直且相等的平行四边形是正方形,正确;、对角线相互平分的四边形是平行四边形,正确;故选:.【点睛】本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大.8、A【解析】试题分析:从上边看立体图形得到俯视图即可得右侧立体图形的俯视图是,故选A.考点:简单组合体的三视图.9、B【解析】
解:∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,∴OA=5,AB∥OC,∴点B的坐标为(8,﹣4),∵函数y=(k<0)的图象经过点B,∴﹣4=,得k=﹣32.故选B.【点睛】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.10、B【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00007m,这个数据用科学记数法表示7×10﹣1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】
根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△AnBnCn的面积是,从而求出第8个正△A8B8C8的面积.【详解】正△A1B1C1的面积是,而△A2B2C2与△A1B1C1相似,并且相似比是1:2,则面积的比是,则正△A2B2C2的面积是×;因而正△A3B3C3与正△A2B2C2的面积的比也是,面积是×()2;依此类推△AnBnCn与△An-1Bn-1Cn-1的面积的比是,第n个三角形的面积是()n-1.所以第8个正△A8B8C8的面积是×()7=.故答案为.【点睛】本题考查了相似三角形的性质及应用,相似三角形面积的比等于相似比的平方,找出规律是关键.12、1【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.考点:分式的值为零的条件.13、【解析】
根据图形可得每增加一个金鱼就增加6根火柴棒即可解答.【详解】第一个图中有8根火柴棒组成,第二个图中有8+6个火柴棒组成,第三个图中有8+2×6个火柴组成,……∴组成n个系列正方形形的火柴棒的根数是8+6(n-1)=6n+2.故答案为6n+2【点睛】本题考查数字规律问题,通过归纳与总结,得到其中的规律是解题关键.14、十【解析】
先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.【详解】解:180°﹣144°=36°,360°÷36°=1,∴这个多边形的边数是1.故答案为十.【点睛】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.15、110°.【解析】
解:∵∠1+∠2=180°,∴a∥b,∴∠3=∠4,又∵∠3=110°,∴∠4=110°.故答案为110°.16、【解析】【分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.【详解】∵AB=AC,∠A=36°,∴∠B=∠ACB==72°,∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,∴AE=CE,∠A=∠ECA=36°,∴∠CEB=72°,∴BC=CE=AE=,故答案为.【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.三、解答题(共8题,共72分)17、(1)甲种型号手机每部进价为1000元,乙种型号手机每部进价为800元;(2)共有四种方案;(3)当m=80时,w始终等于8000,取值与a无关【解析】
(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元根据题意列方程组求出x、y的值即可;(2)设购进甲种型号手机a部,这购进乙种型号手机(20-a)部,根据题意列不等式组求出a的取值范围,根据a为整数求出a的值即可明确方案(3)利用利润=单个利润数量,用a表示出利润W,当利润与a无关时,(2)中的方案利润相同,求出m值即可;【详解】(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,,解得,(2)设购进甲种型号手机a部,这购进乙种型号手机(20-a)部,17400≤1000a+800(20-a)≤18000,解得7≤a≤10,∵a为自然数,∴有a为7、8、9、10共四种方案,(3)甲种型号手机每部利润为1000×40%=400,w=400a+(1280-800-m)(20-a)=(m-80)a+9600-20m,当m=80时,w始终等于8000,取值与a无关.【点睛】本题考查了列二元一次方程组解实际问题的运用,根据题意找出等量关系列出方程是解题关键.18、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.【解析】
(1)将P(4,-1)代入,可求出解析式
(2)将(4,-1)代入求得:b=-4a-1,再代入对称轴直线中,可判断,且开口向上,所以y随x的增大而减小,再把x=-1,x=2代入即可求得.
(3)观察图象可得,当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,这些点可能为x=0,x=1,三种情况,再根据对称轴在不同位置进行讨论即可.【详解】解:(1)由此抛物线顶点为P(4,-1),所以y=a(x-4)2-1=ax2-8ax+16a-1,即16a-1=3,解得a=,b=-8a=-2所以抛物线解析式为:;(2)由此抛物线经过点C(4,-1),所以一1=16a+4b+3,即b=-4a-1.因为抛物线的开口向上,则有其对称轴为直线,而所以当-1≤x≤2时,y随着x的增大而减小当x=-1时,y=a+(4a+1)+3=4+5a当x=2时,y=4a-2(4a+1)+3=1-4a所以当-1≤x≤2时,1-4a≤y≤4+5a;(3)当a=1时,抛物线的解析式为y=x2+bx+3∴抛物线的对称轴为直线由抛物线图象可知,仅当x=0,x=1或x=-时,抛物线上的点可能离x轴最远分别代入可得,当x=0时,y=3当x=1时,y=b+4当x=-时,y=-+3①当一<0,即b>0时,3≤y≤b+4,由b+4=6解得b=2②当0≤-≤1时,即一2≤b≤0时,△=b2-12<0,抛物线与x轴无公共点由b+4=6解得b=2(舍去);③当,即b<-2时,b+4≤y≤3,由b+4=-6解得b=-10综上,b=2或-10【点睛】本题考查了二次函数的性质,待定系数法求函数解析式,以及最值问题,关键是对称轴在不同的范围内,抛物线上的点到x轴距离的最大值的点不同.19、(1);(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是1个单位.【解析】
(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,1)代入计算可得;
(2)由抛物线的对称性得BE=OA=t,据此知AB=10-2t,再由x=t时AD=,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;
(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.【详解】(1)设抛物线解析式为,当时,,点的坐标为,将点坐标代入解析式得,解得:,抛物线的函数表达式为;(2)由抛物线的对称性得,,当时,,矩形的周长,,,,当时,矩形的周长有最大值,最大值为;(3)如图,当时,点、、、的坐标分别为、、、,矩形对角线的交点的坐标为,直线平分矩形的面积,点是和的中点,,由平移知,是的中位线,,所以抛物线向右平移的距离是1个单位.【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.20、(1)一台A型无人机售价800元,一台B型无人机的售价1000元;(2)①y=﹣200x+50000;②购进A型、B型无人机各16台、34台时,才能使总费用最少.【解析】
(1)根据3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元,可以列出相应的方程组,从而可以解答本题;(2)①根据题意可以得到y与x的函数关系式;②根据①中的函数关系式和B型无人机的数量不少于A型无人机的数量的2倍,可以求得购进A型、B型无人机各多少台,才能使总费用最少.【详解】解:(1)设一台型无人机售价元,一台型无人机的售价元,,解得,,答:一台型无人机售价元,一台型无人机的售价元;(2)①由题意可得,即y与x的函数关系式为;②∵B型无人机的数量不少于A型无人机的数量的2倍,,解得,,,∴当时,y取得最小值,此时,答:购进型、型无人机各台、台时,才能使总费用最少.【点睛】本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和方程的知识解答.21、(1)AD2=AC•CD.(2)36°.【解析】试题分析:(1)通过计算得到AD2=(2)由AD2=AC⋅CD,得到BC2设∠A=∠ABD=x,则∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形内角和等于180°,解得:x=36°,从而得到结论.试题解析:(1)∵AD=BC=,∴AD2=(5-1∵AC=1,∴CD=1-5-12=3-(2)∵AD2=AC⋅CD,∴BC2设∠A=∠ABD=x,则∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.考点:相似三角形的判定与性质.22、130小明平均数接近,而排球成绩的中位数和众数都较高.【解析】
根据抽取的16人中成绩达到优秀的百分比,即可得到全校达到优秀的人数;根据平均数接近,而排球成绩的中位数和众数都较高,即可得到结论.【详解】解:补全表格成绩:人数项目10排球11275篮球021103达到优秀的人数约为(人);故答案为130;同意小明的看法,理由为:平均数接近,而排球成绩的中位数和众数都较高答案不唯一,理由需支持判断结论故答案为小明,平均数接近,而排球成绩的中位数和众数都较高.【点睛】本题考查众数、中位数,平均数的应用,解题的关键是掌握众数、中位数、平均数的定义以及用样本估计总体.23、(1)证明见解析;(2)①32【解析】
(1)过点A作AF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度企业职工劳动合同续签优惠政策3篇
- 临沂职业学院《半导体材料分析测试实验》2023-2024学年第一学期期末试卷
- 2024年期铁矿石交易协议样本版
- 口语交际:商量 教学实录-2024-2025学年语文二年级上册统编版
- 2024年度参股双方市场拓展协议3篇
- 2024年度汽车维修保养优惠奖励合同3篇
- 2024年版标准内部工程承包协议条款版
- 2021学院新老生交流会策划书范文
- 2024年标准派遣境外工作协议版B版
- 利用问题拓展式学习 提升语文课堂教学实效
- 钹式换能器的共振特性研究
- 《我们去看海》阅读答案
- 智慧酒店无人酒店综合服务解决方案
- 考研英语一新题型历年真题(2005-2012)
- 健身房会籍顾问基础培训资料
- 9脊柱与四肢、神经系统检查总结
- 秀场内外-走进服装表演艺术智慧树知到答案章节测试2023年武汉纺织大学
- 【高分复习笔记】王建《现代自然地理学》(第2版)笔记和课后习题详解
- TSGD0012023年压力管道安全技术监察规程-工业管道(高清晰版)
- SMM英国建筑工程标准计量规则中文 全套
- 2023-2024学年浙江省富阳市小学数学四年级上册期末通关题
评论
0/150
提交评论