湖南省A佳经典联考试题2023-2024学年高一下数学期末经典试题含解析_第1页
湖南省A佳经典联考试题2023-2024学年高一下数学期末经典试题含解析_第2页
湖南省A佳经典联考试题2023-2024学年高一下数学期末经典试题含解析_第3页
湖南省A佳经典联考试题2023-2024学年高一下数学期末经典试题含解析_第4页
湖南省A佳经典联考试题2023-2024学年高一下数学期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省A佳经典联考试题2023-2024学年高一下数学期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的单调增区间是()A. B.C. D.2.若||=2cos15°,||=4sin15°,的夹角为30°,则等于()A. B. C.2 D.3.等差数列中,,则的值为()A.14 B.17 C.19 D.214.若,则函数的最小值是()A. B. C. D.5.若,,则的终边所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限6.设,则下列不等式恒成立的是A. B.C. D.7.若是异面直线,直线,则与的位置关系是()A.相交 B.异面 C.平行 D.异面或相交8.函数的最小正周期是A. B. C. D.9.已知集合,,则()A. B. C. D.10.已知在中,两直角边,,是内一点,且,设,则()A. B. C.3 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知正方体中,,分别为,的中点,那么异面直线与所成角的余弦值为______.12._______________。13.如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,则x的值为_________.14.如图,正方体ABCD﹣A1B1C1D1的棱长为1,M为B1C1中点,连接A1B,D1M,则异面直线A1B和D1M所成角的余弦值为________________________.15.直线在轴上的截距是__________.16.四棱柱中,平面ABCD,平面ABCD是菱形,,,,E是BC的中点,则点C到平面的距离等于________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.的内角的对边分别为,且.(1)求;(2)若,点在边上,,,求的面积.18.已知是的内角,分别是角的对边.若,(1)求角的大小;(2)若,的面积为,为的中点,求19.已知函数f(x)=3sin(2x+π3)-4cos(1)求函数g(x)的解析式;(2)求函数g(x)在[π20.已知等比数列的前项和为,且成等差数列,(1)求数列的公比;(2)若,求数列的通项公式.21.如图,已知是正三角形,EA,CD都垂直于平面ABC,且,,F是BE的中点,求证:(1)平面ABC;(2)平面EDB.(3)求几何体的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

化简函数可得y=2sin(2x),把“2x”作为一个整体,再根据正弦函数的单调增区间,求出x的范围,即是所求函数的增区间.【详解】,由2kπ≤2x2kπ得,kπx≤kπ(k∈z),∴函数的单调增区间是[kπ,kπ](k∈z),故选D.【点睛】本题考查了正弦函数的单调性应用,一般的做法是利用整体思想,根据正弦函数(余弦函数)的性质进行求解.2、B【解析】分析:先根据向量数量积定义化简,再根据二倍角公式求值.详解:因为,所以选B.点睛:平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式;二是坐标公式;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.3、B【解析】

利用等差数列的性质,.【详解】,解得:.故选B.【点睛】本题考查了等比数列的性质,属于基础题型.4、B【解析】

直接用均值不等式求最小值.【详解】当且仅当,即时,取等号.故选:B【点睛】本题考查利用均值不等式求函数最小值,属于基础题.5、B【解析】由一全正二正弦三正切四余弦可得的终边所在的象限为第二象限,故选B.考点:三角函数6、C【解析】

利用不等式的性质,合理推理,即可求解,得到答案.【详解】因为,所以,所以A项不正确;因为,所以,,则,所以B不正确;因为,则,所以,又因为,则,所以等号不成立,所以C正确;由,所以,所以D错误.【点睛】本题主要考查了不等式的性质的应用,其中解答中熟记不等式的性质,合理运算是解答的关键,着重考查了推理与运算能力,属于基础题.7、D【解析】

若为异面直线,且直线,则与可能相交,也可能异面,但是与不能平行,若,则,与已知矛盾,选项、、不正确故选.8、D【解析】

的最小正周期为,求解得到结果.【详解】由解析式可知,最小正周期本题正确选项:【点睛】本题考查的性质,属于基础题.9、A【解析】

先分别求出集合,,由此能求出.【详解】集合,,1,,或,,,.故选:.【点睛】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.10、A【解析】分析:建立平面直角坐标系,分别写出B、C点坐标,由于∠DAB=60°,设D点坐标为(m,),由平面向量坐标表示,可求出λ和μ.详解:如图以A为原点,以AB所在的直线为x轴,以AC所在的直线为y轴建立平面直角坐标系,则B点坐标为(1,0),C点坐标为(0,2),因为∠DAB=60°,设D点坐标为(m,),=λ(1,0)+μ(0,2)=(λ,2μ)⇒λ=m,μ=,则.故选A.点睛:本题主要考察平面向量的坐标表示,根据条件建立平面直角坐标系,分别写出各点坐标,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

异面直线所成角,一般平移到同一个平面求解.【详解】连接DF,异面直线与所成角等于【点睛】异面直线所成角,一般平移到同一个平面求解.不能平移时通常考虑建系,利用向量解决问题.12、【解析】

本题首先可根据同角三角函数关系式化简得出,然后根据两角差的正弦公式化简得出,最后根据二倍角公式以及三角函数诱导公式即可得出结果。【详解】,故答案为【点睛】本题考查根据三角函数相关公式进行化简求值,考查到的公式有、、以及,考查化归与转化思想,是中档题。13、【解析】

根据茎叶图中数据和中位数的定义可构造方程求得.【详解】甲组数据的中位数为,解得:故答案为:【点睛】本题考查茎叶图中中位数相关问题的求解,属于基础题.14、.【解析】

连接、,取的中点,连接,可知,且是以为腰的等腰三角形,然后利用锐角三角函数可求出的值作为所求的答案.【详解】如下图所示:连接、,取的中点,连接,在正方体中,,则四边形为平行四边形,所以,则异面直线和所成的角为或其补角,易知,由勾股定理可得,,为的中点,则,在中,,因此,异面直线和所成角的余弦值为,故答案为.【点睛】本题考查异面直线所成角的余弦值的计算,求解异面直线所成的角一般利用平移直线法求解,遵循“一作、二证、三计算”,在计算时,一般利用锐角三角函数的定义或余弦定理求解,考查计算能力,属于中等题.15、【解析】

把直线方程化为斜截式,可得它在轴上的截距.【详解】解:直线,即,故它在轴上的截距是4,故答案为:.【点睛】本题主要考查直线方程的几种形式,属于基础题.16、【解析】

利用等体法即可求解.【详解】如图,由ABCD是菱形,,,E是BC的中点,所以,又平面ABCD,所以平面ABCD,即,又,则平面,由平面,所以,所以,设点C到平面的距离为,由即,即,所以.故答案为:【点睛】本题考查了等体法求点到面的距离,同时考查了线面垂直的判定定理,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)由正弦定理、三角函数恒等变换化简已知可得:,结合范围,可得,进而可求A的值.(2)在△ADC中,由正弦定理可得,可得,利用三角形内角和定理可求,即可求得,再利用三角形的面积公式即可计算得解.【详解】(1)∵,∴由正弦定理可得:,∴可得:,可得:,∵,∴,可得:,∵,∴,∴,可得:.(2)∵,点D在边上,,∴在中,由正弦定理,可得:,可得:,∴,可得:,∴,∴,∴.【点睛】本题主要考查了正弦定理、三角函数恒等变换的应用,三角形内角和定理及三角形的面积公式在解三角形中的应用,考查了计算能力和转化能力,属于中档题.18、(1)(2)【解析】

(1)由,可将,转化为,,代入原式,根据正弦定理可得,结合余弦定理,及,可得角C的大小。(2)因为,所以。所以为等腰三角形,根据面积为,可得,在,,,,结合余弦定理,即可求解。【详解】(1)由得由正弦定理,得,即所以又,则(2)因为,所以.所以为等腰三角形,且顶角.因为所以.在中,,,,所以解得.【点睛】本题考查同角三角函数的基本关系,正弦定理,余弦定理,求面积公式,综合性较强,考查学生分析推理,计算化简的能力,属基础题。19、(1)g(x)=sin【解析】

(1)首先化简三角函数式,然后确定平移变换之后的函数解析式即可;(2)结合(1)中函数的解析式确定函数的最大值即可.【详解】(1)f(x)==3(sin2xcos=3由题意得g(x)=sin[2(x+π化简得g(x)=sin(2x+π(2)∵π12可得π3∴-1当x=π6时,函数当x=π2时,函数g(x)有最小值【点睛】本题主要考查三角函数图像的变换,三角函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.20、(1)(2)【解析】

(1)由等差数列的中项性质,以及等比数列的求和公式,解方程可得;(2)由等比数列的通项公式,解方程可得首项,进而得到所求通项公式.【详解】解:(1)等比数列的前项和为,且,,成等差数列,可得,显然不成立,即有,则,化为,解得;(2),即,可得,数列的通项公式为.【点睛】本题考查等比数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.21、(1)见解析(2)见解析(3)【解析】

(1)如图:证明得到答案.(2)证明得到答案.(3)几何体转化为,利用体积公式得到答案.【详解】(1)∵F分别是BE的中点,取BA的中点M,∴FM∥EA,FMEA=1∵EA、CD都垂直于平面ABC,∴CD∥EA,∴CD∥FM,又CD=FM∴四边形FMCD是平行四边形,∴FD∥MC,FD⊄

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论