2024届内蒙古包头市北方重工业集团有限公司第三中学高一下数学期末复习检测模拟试题含解析_第1页
2024届内蒙古包头市北方重工业集团有限公司第三中学高一下数学期末复习检测模拟试题含解析_第2页
2024届内蒙古包头市北方重工业集团有限公司第三中学高一下数学期末复习检测模拟试题含解析_第3页
2024届内蒙古包头市北方重工业集团有限公司第三中学高一下数学期末复习检测模拟试题含解析_第4页
2024届内蒙古包头市北方重工业集团有限公司第三中学高一下数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届内蒙古包头市北方重工业集团有限公司第三中学高一下数学期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列各角中,与角终边相同的角是()A. B. C. D.2.如果,并且,那么下列不等式中不一定成立的是()A. B. C. D.3.若,则一定有()A. B. C. D.4.已知函数,其函数图像的一个对称中心是,则该函数的单调递增区间可以是()A. B. C. D.5.数列,…的一个通项公式是()A.B.C.D.6.设,若关于的不等式在区间上有解,则()A. B. C. D.7.如图,正四棱柱中(底面是正方形,侧棱垂直于底面),,则异面直线与所成角的余弦值为()A. B. C. D.8.把函数图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再把所得曲线向右平移个单位长度,最后所得曲线的一条对称轴是()A. B. C. D.9.已知直线与直线垂直,则()A. B. C.或 D.或10.已知圆心在轴上的圆经过,两点,则的方程为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则.12.设为实数,为不超过实数的最大整数,如,.记,则的取值范围为,现定义无穷数列如下:,当时,;当时,,若,则________.13.已知数列:,,,,,,,,,,,,,,,,,则__________.14.在公差为的等差数列中,有性质:,根据上述性质,相应地在公比为等比数列中,有性质:____________.15.已知等比数列的首项为,公比为,其前项和为,下列命题中正确的是______.(写出全部正确命题的序号)(1)等比数列单调递增的充要条件是,且;(2)数列:,,,……,也是等比数列;(3);(4)点在函数(,为常数,且,)的图像上.16.已知函数,,则的最大值是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角A,B,C的对边分别是a,b,c,.(1)求角A的大小;(2)若,,求的面积.18.已知三棱锥中,,.若平面分别与棱相交于点且平面.求证:(1);(2).19.如图,飞机的航线和山顶在同一个铅垂平面内,已知飞机的高度为海拔,速度为,飞行员在处先看到山顶的俯角为18°30′,经过后又在处看到山顶的俯角为81°(1)求飞机在处与山顶的距离(精确到);(2)求山顶的海拔高度(精确到)参考数据:,20.已知函数,且,.(1)求该函数的最小正周期及对称中心坐标;(2)若方程的根为,且,求的值.21.已知函数,其中.(1)当时,求的最小值;(2)设函数恰有两个零点,且,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

给出具体角度,可以得到终边相同角的表达式.【详解】角终边相同的角可以表示为,当时,,所以答案选择B【点睛】判断两角是否是终边相同角,即判断是否相差整数倍.2、D【解析】

不等式两边乘(或除以)同一个负数,不等号的方向改变,可判定A的真假;a>b,-1>-2,根据同向不等式可以相加,可判定B的真假;根据a-b>0则b-a<0,进行判定C的真假;a的符号不确定,从而选项D不一定成立,从而得到结论.【详解】∵a,b∈R,并且a>b,∴−a<−b,故A一定正确;a>b,−1>−2,根据同向不等式可以相加得,a−1>b−2,故B一定正确;a−b>0则b−a<0,所以a−b>b−a,故C一定正确;不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,而a的符号不确定,故D不一定正确.故选D.【点睛】本题主要考查利用不等式的性质判断不等关系,属于基础题.3、C【解析】

由题,可得,且,即,整理后即可得到作出判断【详解】由题可得,则,因为,则,,则有,所以,即故选C【点睛】本题考查不等式的性质的应用,属于基础题4、D【解析】

根据对称中心,结合的范围可求得,从而得到函数解析式;将所给区间代入求得的范围,与的单调区间进行对应可得到结果.【详解】为函数的对称中心,解得:,当时,,此时不单调,错误;当时,,此时不单调,错误;当时,,此时不单调,错误;当时,,此时单调递增,正确本题正确选项:【点睛】本题考查正切型函数单调区间的求解问题,涉及到利用正切函数的对称中心求解函数解析式;关键是能够采用整体对应的方式,将正切型函数与正切函数进行对应,从而求得结果.5、D【解析】试题分析:由题意得,可采用验证法,分别令,即可作出选择,只有满足题意,故选D.考点:归纳数列的通项公式.6、D【解析】

根据题意得不等式对应的二次函数开口向上,分别讨论三种情况即可.【详解】由题意得:当当当综上所述:,选D.【点睛】本题主要考查了含参一元二次不等式中参数的取值范围.解这类题通常分三种情况:.有时还需要结合韦达定理进行解决.7、A【解析】

试题分析:连结,异面直线所成角为,设,在中考点:异面直线所成角8、A【解析】

先求出图像变换最后得到的解析式,再求函数图像的对称轴方程.【详解】由题得图像变换最后得到的解析式为,令,令k=-1,所以.故选A【点睛】本题主要考查三角函数图像变换和三角函数图像对称轴的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.9、D【解析】

由垂直,可得,即可求出的值.【详解】直线与直线垂直,,解得或.故选D.【点睛】对于直线:和直线:,①;②.10、A【解析】

由圆心在轴上设出圆心坐标,设出圆的方程,将,两点坐标代入,即可求得圆心坐标和半径,进而得圆的方程.【详解】因为圆心在轴上,设圆心坐标为,半径为设圆的方程为因为圆经过,两点代入可得解方程求得所以圆C的方程为故选:A【点睛】本题考查了圆的方程求法,关键是求出圆心和半径,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:两式平方相加并整理得,所以.注意公式的结构特点,从整体去解决问题.考点:三角恒等变换.12、【解析】

根据已知条件,计算数列的前几项,观察得出无穷数列呈周期性变化,即可求出的值。【详解】当时,,,,,……,无穷数列周期性变化,周期为2,所以。【点睛】本题主要考查学生的数学抽象能力,通过取整函数得到数列,观察数列的特征,求数列中的某项值。13、【解析】

根据数列的规律和可知的取值为,则分母为;又为分母为的项中的第项,则分子为,从而得到结果.【详解】当时,;当时,的分母为:又的分子为:本题正确结果:【点睛】本题考查根据数列的规律求解数列中的项,关键是能够根据分子的变化特点确定的取值.14、【解析】

根据题中条件,类比等差数列的性质,可直接得出结果.【详解】因为在公差为的等差数列中,有性质:,类比等差数列的性质,可得:在公比为等比数列中,故答案为:【点睛】本题主要考查类比推理,只需根据题中条件,结合等差数列与等比数列的特征,即可得出结果,属于常考题型.15、(3)【解析】

根据递增数列的概念,以及等比数列的通项公式,充分条件与必要条件的概念,可判断(1);令,为偶数,可判断(2);根据等比数列的性质,直接计算,可判断(3);令,结合题意,可判断(4),进而可得出结果.【详解】(1)若等比数列单调递增,则,所以或,故且不是等比数列单调递增的充要条件;(1)错;(2)若,为偶数,则,,因等比数列中的项不为,故此时数列,,,……,不成等比数列;(2)错;(3),所以(3)正确;(4)若,则,若点在函数的图像上,则,因,,故不能对任意恒成立;故(4)错.故答案为:(3)【点睛】本题主要考命题真假的判定,熟记等比数列的性质,以及等比数列的通项公式与求和公式即可,属于常考题型.16、3【解析】函数在上为减函数,故最大值为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)由,结合,得到求解.(2)据(1)知.再由余弦定理求得边,再利用求解.【详解】(1)因为,,所以,所以,所以,或(舍去).又因为,所以.(2)由(1)知.由余弦定理得所以,即,所以(舍)或.所以的面积.【点睛】本题主要考查了余弦定理和正弦定理的应用,还考查了运算求解的能力,属于中档题.18、(1)证明见解析;(2)证明见解析.【解析】

(1)利用线面平行的性质定理可得线线平行,最后利用平行公理可以证明出;(2)利用线面垂直的判定定理可以证明线面垂直,利用线面垂直的性质可以证明线线垂直,利用平行线的性质,最后证明出.【详解】证明(1)因为平面,平面平面,平面,所以有,同理可证出,根据平行公理,可得;(2)因为,,,平面,所以平面,而平面,所以,由(1)可知,所以.【点睛】本题考查了线面平行的性质定理,线面垂直的判定定理、以及平行公理的应用.19、(1)14981m(2)【解析】

(1)先求出飞机在150秒内飞行的距离,然后由正弦定理可得;(2)飞机,山顶的海拔的差为,则山顶的海拔高度为.【详解】解:(1)飞机在150秒内飞行的距离为,在中,由正弦定理,有,∴;(2)飞机,山顶的海拔的差为,,即山顶的海拔高度为.【点睛】本题主要考查正弦定理的应用,考查了计算能力,属于中档题.20、(1)最小正周期为.对称中心坐标为;(2)-1【解析】

(1)由题意两未知数列两方程即可求出、的值,再进行三角变换,可得的解析式,再利用正弦函数的周期公式、图象的对称性,即可得出结论.(2)先由条件求得的值,可得的值.【详解】(1)由,得:,解得:,,,即函数的最小正周期为.由得:函数的对称中心坐标为;(2)由题意得:,即,或,则或,由知:,.【点睛】本题主要考查三角恒等变换,正弦函数的周期性、图象的对称性,以及三角函数求值.21、(1);(2)【解析】

(1)当时,利用指数函数和二次函数的图象与性质,得到函数的单调性,即可求得函数的最小值;(2)分段讨论讨论函数在相应的区间内的根的个数,函数在时,至多有一个零点,函数在时,可能仅有一个零点,可能有两个零点,分别求出的取值范围,可得解.【详解】(1)当时,函数,当时,,由指数函数的性质,可得函数在上为增函数,且;当时,,由二次函数的性质,可得函数在上为减函数,在上为增函数,又由函数,当时,函数取得最小值为;故当时,最小值为.(2)因为函数恰有两个零点,所以(ⅰ)当时,函数有一个零点,令得,因为时,,所以时,函数有一个零点,设零点为且,此时需函数在时也恰有一个零点,令,即,得,令,设,,因为,所以,,,当时,,所以,即,所以在上单调递增;当时,,所以,即,所以在上单调递减;而当时,,又时,,所以要使在时恰有一个零点,则需,要使函数恰有两个零点,且,设在时的零点为,则需,而当时,,所以当时,函数恰有两个零点,并且满足;(ⅱ)若当时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论