2023-2024学年河北省河间市十四中数学高一下期末质量跟踪监视模拟试题含解析_第1页
2023-2024学年河北省河间市十四中数学高一下期末质量跟踪监视模拟试题含解析_第2页
2023-2024学年河北省河间市十四中数学高一下期末质量跟踪监视模拟试题含解析_第3页
2023-2024学年河北省河间市十四中数学高一下期末质量跟踪监视模拟试题含解析_第4页
2023-2024学年河北省河间市十四中数学高一下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年河北省河间市十四中数学高一下期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,两条不同直线与的交点在直线上,则的值为()A.2 B.1 C.0 D.-12.若,则下列不等式不成立的是()A. B. C. D.3.高一某班男生36人,女生24人,现用分层抽样的方法抽取一个容量为的样本,若抽出的女生为12人,则的值为()A.18 B.20 C.30 D.364.设,则的取值范围是()A. B. C. D.5.设,若3是与的等比中项,则的最小值为().A. B. C. D.6.等比数列的各项均为正数,且,则()A.3 B.6 C.9 D.817.角的终边在直线上,则()A. B. C. D.8.已知m、n、a、b为空间四条不同直线,α、β、为不同的平面,则下列命题正确的是().A.若,,则B.若,,则C.若,,,则D.若,,,则9.若实数x,y满足,则z=x+y的最小值为()A.2 B.3 C.4 D.510.点(4,0)关于直线5x+4y+21=0的对称点是().A.(-6,8) B.(-8,-6) C.(6,8) D.(-6,-8)二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系中,圆的方程为.若直线上存在一点,使过所作的圆的两条切线相互垂直,则实数的取值范围是______.12.在三棱锥中,已知,,则三棱锥内切球的表面积为______.13.数列通项公式,前项和为,则________.14.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.15.在平面直角坐标系中,角的顶点在原点,始边与轴的正半轴重合,终边过点,则______16.一圆柱的侧面展开图是长、宽分别为3、4的矩形,则此圆柱的侧面积是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设数列的前项和为,若且求若数列满足,求数列的前项和.18.已知.(Ⅰ)化简;(Ⅱ)已知,求的值.19.已知函数()的一段图象如图所示.(1)求函数的解析式;(2)若,求函数的值域.20.在中,角,,所对的边分别为,,,且.(Ⅰ)求角的大小;(Ⅱ)若的面积为,其外接圆的半径为,求的周长.21.某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示),由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.(1)根据频率分布直方图计算图中各小长方形的宽度;(2)试估计该公司在若干地区各投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入(单位:万元)12345销售收益(单位:万元)2337由表中的数据显示,与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.(参考公式:)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

联立方程求交点,根据交点在在直线上,得到三角关系式,化简得到答案.【详解】交点在直线上观察分母和不是恒相等故故答案选C【点睛】本题考查了直线方程,三角函数运算,意在考查学生的计算能力.2、A【解析】

由题得a<b<0,再利用作差比较法判断每一个选项的正误得解.【详解】由题得a<b<0,对于选项A,=,所以选项A错误.对于选项B,显然正确.对于选项C,,所以,所以选项C正确.对于选项D,,所以选项D正确.故答案为A【点睛】(1)本题主要考查不等式的基本性质和实数大小的比较,意在考查学生对这些知识的掌握水平和分析推理能力.(2)比差的一般步骤是:作差→变形(配方、因式分解、通分等)→与零比→下结论;比商的一般步骤是:作商→变形(配方、因式分解、通分等)→与1比→下结论.如果两个数都是正数,一般用比商,其它一般用比差.3、C【解析】

根据分层抽样等比例抽样的特点,进行计算即可.【详解】根据题意,可得,解得.故选:C.【点睛】本题考查分层抽样的等比例抽取的性质,属基础题.4、B【解析】

由同向不等式的可加性求解即可.【详解】解:因为,所以,又,,所以,故选:B.【点睛】本题考查了不等式的性质,属基础题.5、C【解析】

由3是与的等比中项,可得,再利用不等式知识可得的最小值.【详解】解:3是与的等比中项,,,=,故选C.【点睛】本题考查了指数式和对数式的互化,及均值不等式求最值的运用,考查了计算变通能力.6、A【解析】

利用等比数列性质可求得,将所求式子利用对数运算法则和等比数列性质可化为,代入求得结果.【详解】且本题正确选项:【点睛】本题考查等比数列性质的应用,关键是灵活利用等比中项的性质,属于基础题.7、C【解析】

先由直线的斜率得出,再利用诱导公式将分式化为弦的一次分式齐次式,并在分子分母中同时除以,利用弦化切的思想求出所求代数式的值.【详解】角的终边在直线上,,则,故选C.【点睛】本题考查诱导公式化简求值,考查弦化切思想的应用,弦化切一般适用于以下两个方面:(1)分式为角弦的次分式齐次式,在分子分母中同时除以,可以弦化切;(2)代数式为角的二次整式,先除以,转化为角弦的二次分式其次式,然后在分子分母中同时除以,可以实现弦化切.8、D【解析】

根据空间中直线与平面、平面与平面位置关系及其性质,即可判断各选项.【详解】对于A,,,只有当与平面α、β的交线垂直时,成立,当与平面α、β的交线不垂直时,不成立,所以A错误;对于B,,,则或,所以B错误;对于C,,,,由面面平行性质可知,或a、b为异面直线,所以C错误;对于D,若,,,由线面垂直与线面平行性质可知,成立,所以D正确.故选:D.【点睛】本题考查了空间中直线与平面、平面与平面位置关系的性质与判定,对空间想象能力要求较高,属于基础题.9、D【解析】

由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【详解】由实数,满足作出可行域,如图:联立,解得,化目标函数为,由图可知,当直线过时,直线在轴上的截距最小,此时有最小值为.故选:D.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于基础题.10、D【解析】试题分析:设点(4,0)关于直线5x+4y+21=0的对称点是,则点在直线5x+4y+21=0上,将选项代入就可排除A,B,C,答案为D考点:点关于直线对称,排除法的应用二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:记两个切点为,则由于,因此四边形是正方形,,圆标准方程为,,,于是圆心直线的距离不大于,,解得.考点:直线和圆的位置关系.12、【解析】

先计算出三棱锥的体积,利用等体积法求出三棱锥的内切球的半径,再求出内切球的表面积。【详解】取CD中点为E,并连接AE、BE在中,由等腰三角形的性质可得,同理则在中点A到边BE的距离即为点A到平面BCD的距离h,在中,【点睛】本题综合考查了三棱锥的体积、三棱锥内切圆的求法、球的表面积,属于中档题.13、1【解析】

利用裂项求和法求出,取极限进而即可求解.【详解】,故,所以,故答案为:1【点睛】本题考查了裂项求和法以及求极限值,属于基础题.14、【解析】

求出长方体体积与三棱锥的体积后即可得到棱锥的体积与剩下的几何体体积之比.【详解】设长方体长宽高分别为,,,所以长方体体积,三棱锥体积,所以棱锥的体积与剩下的几何体体积的之比为:.故答案为:.【点睛】本题主要考查了长方体体积公式,三棱锥体积公式,属于基础题.15、-1【解析】

根据三角函数的定义求得,再代入的展开式进行求值.【详解】角终边过点,终边在第三象限,根据三角函数的定义知:,【点睛】考查三角函数的定义及三角恒等变换,在变换过程中要注意符号的正负.16、12【解析】

直接根据圆柱的侧面展开图的面积和圆柱侧面积的关系计算得解.【详解】因为圆柱的侧面展开图的面积和圆柱侧面积相等,所以此圆柱的侧面积为.故答案为:12【点睛】本题主要考查圆柱的侧面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)由时,,再验证适合,于是得出,再利用等差数列的求和公式可求出;(2)求出数列的通项公式,判断出数列为等比数列,再利用等比数列的求和公式求出数列的前项和.【详解】(1)当且时,;也适合上式,所以,,则数列为等差数列,因此,;(2),且,所以,数列是等比数列,且公比为,所以.【点睛】本题考查数列的前项和与数列通项的关系,考查等差数列与等比数列的求和公式,考查计算能力,属于中等题.18、(Ⅰ);(Ⅱ)-2。【解析】试题分析:(Ⅰ)5分(Ⅱ)10分考点:三角函数化简求值点评:三角函数化简主要考察的是诱导公式,如等,本题难度不大,需要学生熟记公式19、(1);(2)【解析】

(1)由函数的一段图象求得、、和的值即可;(2)由,求得的取值范围,再利用正弦函数的性质求得的最大和最小值即可.【详解】解:(1)由函数的一段图象知,,,,解得,又时,,,,解得,;,函数的解析式为;(2)当时,,令,解得,此时取得最大值为2;令,解得,此时取得最小值为;函数的值域为.【点睛】本题考查了函数的图象和性质的应用问题,属于基础题.20、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)由由正弦定理得,进而得到,求得,即可求解;(Ⅱ)由(Ⅰ)和正弦定理,求得,再由余弦定理得,利用三角形的面积公式,求得,进而求得的值,得出三角形的周长.【详解】(Ⅰ)由题意,因为,由正弦定理,得,即,由,得,又由,则,所以,解得,又因为,所以.(Ⅱ)由(Ⅰ)知,且外接圆的半径为,由正弦定理可得,解得,由余弦定理得,可得,因为的面积为,解得,所以,解得:,所以的周长.【点睛】本题主要考查了三角恒等变换的应用,以及正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.21、(1)2;(2)5;(3)空白栏中填5,【解析】

(1)根据频率等于小长方形的面积以及频率和为,得到关于的等式,求解出即可;(2)根据各组数据的组中值与频率的乘积之和得到对应的销售收益的平均值;(3)先填写空白栏数据,然后根据所给数据计算出,即可求解出回归直线方程.【详解】(1)设各小长方形的宽度

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论