湖南省娄底市2023-2024学年高一数学第二学期期末学业质量监测试题含解析_第1页
湖南省娄底市2023-2024学年高一数学第二学期期末学业质量监测试题含解析_第2页
湖南省娄底市2023-2024学年高一数学第二学期期末学业质量监测试题含解析_第3页
湖南省娄底市2023-2024学年高一数学第二学期期末学业质量监测试题含解析_第4页
湖南省娄底市2023-2024学年高一数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省娄底市2023-2024学年高一数学第二学期期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某公司计划在甲、乙两个电视台做总时间不超过300分钟的广告,广告费用不超过9万元,甲、乙电视台的广告费标准分别是500元/分钟和200元/分钟,假设甲、乙两个电视台为该公司做的广告能给公司带来的收益分别为0.4万元/分钟和0.2万元/分钟,那么该公司合理分配在甲、乙两个电视台的广告时间,能使公司获得最大的收益是()万元A.72 B.80 C.84 D.902.对于数列,定义为数列的“好数”,已知某数列的“好数”,记数列的前项和为,若对任意的恒成立,则实数的取值范围为()A. B. C. D.3.已知为锐角,角的终边过点,则()A. B. C. D.4.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为()(参考数据:)A.48 B.36 C.24 D.125.已知是定义在上的奇函数,当时,,那么不等式的解集是()A. B.C. D.6.已知三棱锥,若平面,,,,则三棱锥外接球的表面积为()A. B. C. D.7.各项均为实数的等比数列{an}前n项之和记为,若,,则等于A.150 B.-200 C.150或-200 D.-50或4008.执行如图所示的程序框图,若输人的n值为2019,则S=A.-1 B.-12 C.19.在中,角的对边分别为,且.若为钝角,,则的面积为()A. B. C. D.510.已知函数的部分图象如图,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,那么的值是________.12.在我国古代数学著作《孙子算经》中,卷下第二十六题是:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?满足题意的答案可以用数列表示,该数列的通项公式可以表示为________13.某校老年、中年和青年教师的人数分别为90,180,160,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有32人,则抽取的样本中老年教师的人数为_____14.函数,的值域是________.15.已知等差数列的公差为2,若成等比数列,则________.16.函数在的递减区间是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,直三棱柱中,,,,,为垂足.(1)求证:(2)求三棱锥的体积.18.设是两个相互垂直的单位向量,且(Ⅰ)若,求的值;(Ⅱ)若,求的值.19.已知函数的最小正周期为,且该函数图象上的最低点的纵坐标为.(1)求函数的解析式;(2)求函数的单调递增区间及对称轴方程.20.在中,内角,,的对边分别为,,.已知,,且的面积为.(1)求的值;(2)求的周长.21.如图所示,是正三角形,线段和都垂直于平面,设,,且为的中点.(1)求证:平面;(2)求平面与平面所成的较小二面角的大小

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

设公司在甲、乙两个电视台的广告时间分别为分钟,总收益为元,根据题意得到约束条件,目标函数,平行目标函数图象找到在纵轴上截距最大时所经过的点,把点的坐标代入目标函数中即可.【详解】设公司在甲、乙两个电视台的广告时间分别为分钟,总收益为元,则由题意可得可行解域:,目标函数为可行解域化简得,,在平面直角坐标系内,画出可行解域,如下图所示:作直线,即,平行移动直线,当直线过点时,目标函数取得最大值,联立,解得,所以点坐标为,因此目标函数最大值为,故本题选B.【点睛】本题考查了应用线性规划知识解决实际问题的能力,正确列出约束条件,画出可行解域是解题的关键.2、B【解析】分析:由题意首先求得的通项公式,然后结合等差数列的性质得到关于k的不等式组,求解不等式组即可求得最终结果.详解:由题意,,则,很明显n⩾2时,,两式作差可得:,则an=2(n+1),对a1也成立,故an=2(n+1),则an−kn=(2−k)n+2,则数列{an−kn}为等差数列,故Sn⩽S6对任意的恒成立可化为:a6−6k⩾0,a7−7k⩽0;即,解得:.实数的取值范围为.本题选择B选项.点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.3、B【解析】

由题意利用任意角的三角函数的定义求得和,再利用同角三角函数的基本关系求得的值,再利用两角差的余弦公式求得的值.【详解】角的终边过点,,又为锐角,由,可得故选B.【点睛】本题考查任意角的三角函数的定义,考查两角差的余弦,是基础题.4、C【解析】

由开始,按照框图,依次求出s,进行判断。【详解】,故选C.【点睛】框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键。5、B【解析】

根据奇函数的性质求出的解析式,然后分类讨论求出不等式的解集.【详解】因为是定义在上的奇函数,所以有,显然是不等式的解集;当时,;当时,,综上所述:不等式的解集是,故本题选B.【点睛】本题考查了利用奇函数性质求解不等式解集问题,考查了分类思想,正确求出函数的解析式是解题的关键.6、B【解析】

根据题意画出三棱锥的图形,将其放入一个长方体中,容易知道三棱锥的外接球半径,利用球的表面积公式求解即可.【详解】根据题意画出三棱锥如图所示,把三棱锥放入一个长方体中,三棱锥的外接球即这个长方体的外接球,长方体的外接球半径等于体对角线的一半,所以三棱锥的外接球半径,三棱锥的外接球的表面积.故选:B【点睛】本题主要考查三棱锥的外接球问题,对于三棱锥三条棱有两两垂直的情况,可以考虑将其放入一个长方体中求解外接球半径,属于基础题.7、A【解析】

根据等比数列的前n项和公式化简S10=10,S30=70,分别求得关于q的两个关系式,可求得公比q的10次方的值,再利用前n项和公式计算S40即可.【详解】因为{an}是等比数列,所以有,二式相除得,,整理得解得或(舍)所以有==所以=1.答案选A.【点睛】此题考查学生灵活运用等比数列的前n项和的公式化简求值,是一道综合题,有一定的运算技巧,需学生在练习中慢慢培养.8、B【解析】

根据程序框图可知,当k=2019时结束计算,此时S=cos【详解】计算过程如下表所示:周期为6n2019k12…20182019S12-1…-k<n是是是是否故选B.【点睛】本题考查程序框图,选用表格计算更加直观,此题关键在于判断何时循环结束.9、B【解析】

先由正弦定理求出c的值,再由C角为锐角求出C角的正余弦值,利用角C的余弦公式求出b的值,带入,及可求出面积.【详解】因为,,所以.又因为,且为锐角,所以,.由余弦定理得:,解得,所以.故选B.【点睛】本题考查利用正余弦定理解三角形,三角形的面积公式,属于中档题.10、B【解析】

根据函数的部分图象求出、、和的值,写出的解析式,再计算的值.【详解】根据函数,,的部分图象知,,,,解得;由五点法画图知,,解得;,.故选.【点睛】本题主要考查利用三角函数的部分图象求函数解析式以及利用两角和的正弦公式求三角函数的值.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

首先根据题中条件求出角,然后代入即可.【详解】由题知,,所以,故.故答案为:.【点睛】本题考查了特殊角的三角函数值,属于基础题.12、【解析】

根据题意结合整除中的余数问题、最小公倍数问题,进行分析求解即可.【详解】由题意得:一个数用3除余2,用7除也余2,所以用3与7的最小公倍数21除也余2,而用21除余2的数我们首先就会想到23;23恰好被5除余3,即最小的一个数为23,同时这个数相差又是3,5,7的最小公倍数,即,即数列的通项公式可以表示为,故答案为:.【点睛】本题以数学文化为背景,利用数列中的整除、最小公倍数进行求解,考查逻辑推理能力和运算求解能力.13、【解析】

根据分层抽样的定义建立比例关系,即可得到答案。【详解】设抽取的样本中老年教师的人数为,学校所有的中老年教师人数为270人由分层抽样的定义可知:,解得:故答案为【点睛】本题考查分层抽样,考查学生的计算能力,属于基础题。14、【解析】

利用正切函数在单调递增,求得的值域为.【详解】因为函数在单调递增,所以,,故函数的值域为.【点睛】本题考查利用函数的单调性求值域,注意定义域、值域要写成区间的形式.15、【解析】

利用等差数列{an}的公差为1,a1,a3,a4成等比数列,求出a1,即可求出a1.【详解】∵等差数列{an}的公差为1,a1,a3,a4成等比数列,

∴(a1+4)1=a1(a1+2),

∴a1=-8,

∴a1=-2.

故答案为-2..【点睛】本题考查等比数列的性质,考查等差数列的通项,考查学生的计算能力,属基础题..16、【解析】

利用两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数的性质得出结论.【详解】,由得,,时,.即所求减区间为.故答案为.【点睛】本题考查三角函数的单调性,解题时需把函数化为一个角一个三角函数形式,然后结合正弦函数的单调性求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)【解析】

(1)先证得平面,由此证得,结合题意所给已知条件,证得平面,从而证得.(2)首先证得平面,由计算出三棱锥的体积.【详解】(1)证明:,∴,又,从而平面∵//,∴平面,平面,∴又,∴平面,于是(2)解:,∴平面∴【点睛】本小题主要考查线线垂直的证明,考查线面垂直的判定定理的运用,考查三棱锥体积的求法,属于中档题.18、(Ⅰ)(Ⅱ)【解析】

(Ⅰ),则存在唯一的使,解得所求参数的值;(Ⅱ)若,则,解得所求参数的值.【详解】解:(Ⅰ)若,则存在唯一的,使,,当时,;(Ⅱ)若,则,因为是两个相互垂直的单位向量,当时,.【点睛】本题考查两个向量平行、垂直的性质,两个向量的数量积公式的应用.19、(1);(2)增区间是,对称轴为【解析】

(1)由周期求得ω,再由函数图象上的最低点的纵坐标为﹣3求得A,则函数解析式可求;(2)直接利用复合函数的单调性求函数f(x)的单调递增区间,再由2x求解x可得函数f(x)的对称轴方程.【详解】(1)因为的最小正周期为因为,,,∴.又函数图象上的最低点纵坐标为,且∴∴.(2)由,可得可得单调递增区间.由,得.所以函数的对称轴方程为.【点睛】本题考查函数解析式的求法,考查y=Asin(ωx+φ)型函数的性质,是基础题.20、(1)(2)【解析】

(1)由和可得sinA和cosA,再由二倍角公式即得cos2A;(2)由面积公式,可得的值,再由和正弦定理可知b和c的值,用余弦定理可计算出a,即得的周长.【详解】解:(1)因为,所以,.因为,所以,,则.(2)由题意可得,的面积为,即.因为,所以,所以,.由余弦定理可得.故的周长为.【点睛】本题考查用正弦定理和余

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论