专题4.5因式分解的应用与阅读分析大题专练(重难点培优30题)-【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【浙教版】(原卷版)_第1页
专题4.5因式分解的应用与阅读分析大题专练(重难点培优30题)-【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【浙教版】(原卷版)_第2页
专题4.5因式分解的应用与阅读分析大题专练(重难点培优30题)-【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【浙教版】(原卷版)_第3页
专题4.5因式分解的应用与阅读分析大题专练(重难点培优30题)-【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【浙教版】(原卷版)_第4页
专题4.5因式分解的应用与阅读分析大题专练(重难点培优30题)-【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【浙教版】(原卷版)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【浙教版】专题4.5因式分解的应用与阅读分析大题专练(重难点培优30题)班级:___________________姓名:_________________得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2022春•江干区校级期中)【方法呈现】我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式.在运用完全平方公式进行因式分解时,关键是判断这个多项式是不是一个完全平方式,同样地,把一个多项式进行局部因式分解可以来解决代数式值的最小(或最大)问题.例如:x2+4x+5=(x2+4x+4)﹣4+5=(x+2)2+1,∵(x+2)2≥0,∴(x+2)2+1≥1.当(x+2)2=0时,(x+2)2+1的值最小,最小值是1.∴x2+4x+5的最小值是1.【尝试应用】(1)直接写出(x﹣1)2+3的最小值为;(2)求代数式x2+10x+32的最小(或最大)值,并写出相应的x的值.【拓展提高】(3)用长12m的一根铁丝围成长方形,能围成的长方形的最大面积是多少?请说明理由.2.(2021春•奉化区校级期末)因为(x+3)(x﹣2)=x2+x﹣6,所以(x2+x﹣6)÷(x﹣2)=x+3,这说明x2+x﹣6能被x﹣2整除,同时也说明x2+x﹣6有一个因式是x﹣2时,因式x﹣2为0,那么多项式x2+x﹣6的值也为0,利用上面的结果求解:(1)多项式A能被x+4整除,商为2x﹣1,求多项式A;(2)已知x﹣2能整除x2+kx﹣14,求k的值.3.(2022春•婺城区期末)在当今“互联网+”的时代,密码与我们生活已经紧密联系在一起.有一种用“因式分解”法产生的密码,其原理是:先将一个多项式分解因式,再计算各因式所得的值,最后将各因式的值进行组合.如:将多项式x(x2﹣9)+2(x2﹣9)因式分解的结果为(x+2)(x+3)(x﹣3),当x=15时,x+2=17,x+3=18,x﹣3=12,此时,可获得密码171812或171218或181712等.根据上述方法,解答以下问题:(1)对于因式分解结果为(x+2)(x﹣1)的多项式,当x=21时,用“因式分解”法获得的密码为.(2)当x=20,y=2时,对于多项式x3﹣xy2,用“因式分解”法可以产生哪些数字密码(求出四个即可)?(3)已知多项式x3+ax2+bx+3因式分解成三个一次式,当x=23时,用“因式分解”法可以得到密码202224,求a,b的值.4.(2022春•西湖区期末)(1)化简:(a﹣b)2+(b﹣c)2+(a﹣c)2.(2)利用(1)中的结果,计算a2+b2+c2﹣ab﹣bc﹣ac的值,其中a=98,b=100,c=102.(3)若a﹣b=1,b﹣c=2,a2+b2+c2=7,求ab+bc+ac的值.5.(2022春•西湖区校级期中)配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.请用配方法解决以下问题.(1)试说明:x,y取任何实数时,多项式x2+y2﹣4x+2y+6的值总为正数;(2)分解因式:a4+a2+1;(3)已知实数a,b满足﹣a2+5a+b﹣3=0,求a+b的最小值.6.(2022春•拱墅区校级期中)如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“和谐数”.(1)36和2020这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?7.(2021春•浦江县校级期末)配方法在初中数学中运用非常广泛,可以求值,因式分解,求最值等.如:求代数式的最值:x2+2x+2=(x+1)2+1,在x=﹣1时,取最小值1.(1)求代数式x2﹣4x的最小值.(2)﹣2x2﹣4x+5有最大还最小值,求出其最值.(3)求x2+的最小值.8.(2021春•婺城区校级期中)阅读理解:对于任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为0,那么这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这个新三位数的和与111的商记为F(n).例如:n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字则得到132,这三个新三位数的和为213+321+132,值等于666,而666÷111=6,所以F(123)=6.(1)F(256)=;(2)若F(n)=9,且300<n<330,求n的值;(3)若s,t都是“相异数”,其中s=100x+43,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=20时,求k的最小值.9.(2021春•吴兴区期中)实验材料:现有若干块如图①所示的正方形和长方形硬纸片.实验目的:用若干块这样的正方形和长方形硬纸片拼成一个新的长方形,通过不同的方法计算面积,得到相应的等式,从而探求出多项式乘法或分解因式的新途径.例如,选取正方形、长方形硬纸片共6块,拼出一个如图②的长方形,计算它的面积写出相应的等式有a2+3ab+2b2=(a+2b)(a+b)或(a+2b)(a+b)=a2+3ab+2b2.探索问题:(1)选取图①所示的正方形、长方形硬纸片共8块可以拼出一个如图②的长方形,计算图②的面积,并写出相应的等式;(2)试借助拼图的方法,把二次三项式2a2+5ab+2b2分解因式,并把所拼的图形画在方框内.(3)小明同学又用了x张边长为a的正方形,y张边长为b的正方形,z张边长为a,b的长方形纸片拼出了一个面积为(25a+7b)(18a+45b)的长方形,那么x+y+z的值为.10.(2021春•宁波期末)阅读理解并解答:【方法呈现】(1)我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式.在运用完全平方公式进行因式分解时,关键是判断这个多项式是不是一个完全平方式,同样地,把一个多项式进行局部因式分解可以来解决代数式值的最小(或最大)问题.例如:x2+2x+3=(x2+2x+1)+2=(x+1)2+2,∵(x+1)2≥0,∴(x+1)2+2≥2.则这个代数式x2+2x+3的最小值是,这时相应的x的值是.【尝试应用】(2)求代数式﹣x2+14x+10的最小(或最大)值,并写出相应的x的值.【拓展提高】(3)将一根长300cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和有最小(或最大)值?若有,求此时这根铁丝剪成两段后的长度及这两个正方形面积的和;若没有,请说明理由.11.(2021春•拱墅区校级期中)如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“奇特数”,例如:8=32﹣12,16=52﹣32,24=72﹣52;则8、16、24这三个数都是奇特数.(1)填空:32奇特数,2018奇特数.(填“是”或者“不是”)(2)设两个连续奇数是2n﹣1和2n+1(其中n取正整数),由这两个连续奇数构造的奇特数是8的倍数吗?为什么?(3)如图所示,拼叠的正方形边长是从1开始的连续奇数…,按此规律拼叠到正方形ABCD,其边长为99,求阴影部分的面积.12.(2021春•镇海区期末)我们知道,多项式的乘法公式可以利用图形中面积的等量关系来验证其正确性,如(a+b)2=a2+2ab+b2就能利用图1的面积进行验证.(1)写出图2中所表示的数学等式:.(2)请你写出图3所能验证的数学等式,并利用你所学的多项式的乘法写出验证过程.(3)利用(2)得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.13.(2022春•鄞州区期中)数学活动课上,老师准备了若干张如图1所示的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b、宽为a的长方形.现在用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2所示的大正方形.观察图形并解答下列问题.(1)由图1到图2的过程可得到的因式分解等式为(用含a,b的代数式表示);(2)小敏用图1中的A、B、C三种纸片拼出一个面积为(2a+b)(a+2b)的大长方形,求需要A、B、C三种纸片各多少张;(3)如图3,C为线段AB上的动点,分别以AC,BC为边在AB的两侧作正方形ACDE和正方形BCFG.若AB=6,记正方形ACDE和正方形BCFG的面积分别为S1,S2,且S1+S2=20,利用(1)中的结论求图中三角形ACF的面积.14.(2022春•东阳市期末)教材中的探究:通过用不同的方法计算同一图形面积,得到相应的等式,从而探求出多项式乘法或分解因式的新途径.例如,选取图①中的正方形、长方形硬纸片共6块,拼出一个如图②的长方形,计算它的面积写出相应的等式:a2+3ab+2b2=(a+2b)(a+b)或(a+2b)(a+b)=a2+3ab+2b2.(1)请根据图③写出代数恒等式,并根据所写恒等式计算(x﹣2y﹣3)2;(2)若x2+y2+z2=1,xy+yz+xz=3,求x+y+z的值.(3)试借助图①的硬纸片,利用拼图的方法把二次三项式3a2+7ab+2b2分解因式,并把所拼的图形画在虚线方框内.15.(2022•柯城区校级开学)把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图①,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)如图②,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的形式表示这个大正方形的面积,你能发现什么结论?请用等式表示出来.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=10,a2+b2+c2=38,求ab+bc+ac的值.(3)如图③,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一条直线上,连结BD和BF.若这两个正方形的边长满足a+b=10,ab=20,请求出阴影部分的面积.16.(2022秋•鄞州区月考)学习材料:对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“异位数”,将一个“异位数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.问题解决:(1)计算:F(243)=;F(617)=;(2)若n为“异位数”,则F(n)的最大值与最小值的差为;(3)若m=为“异位数”,且满足a<b<c,若F(m)=8,则m=;(4)若s,t都是“异位数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是整数),规定:k=,当F(s)+F(t)=16时,k的值为.17.(2021春•奉化区校级期末)现有足够多的甲、乙、丙三种卡片,如图1所示.(1)选用其中若干张卡片拼成一个长方形(图2).①请用两种不同的方法表示长方形(图2)的面积(用含有a,b的代数式表示).②若b=a,且长方形(图2)的面积是35,求一张乙卡片的面积.(2)若从中取若干张卡片拼成一个面积为4a2+4ab+b2的正方形,求出拼成的正方形的边长.18.(2021春•奉化区校级期末)如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形.(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为(只要写出一个即可);(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;②若三个实数x,y,z满足2x×4y×8z=,x2+4y2+9z2=40,求2xy+3xz+6yz的值.19.(2021春•奉化区校级期末)我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.例如:由图1可得到(a+b)2=a2+2ab+b2(1)写出由图2所表示的数学等式;(2)写出由图3所表示的数学等式;(3)已知实数a,b,c满足a+b+c=1,a2+b2+c2=1.求①ab+bc+ca的值;②a3+b3+c3﹣3abc的值.20.(2020秋•镇海区校级期中)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”.再如22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出2个四位“和谐数”,并猜想任意一个四位“和谐数”能否被11整除?并说明理由.(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字是x(1≤x≤4,x为自然数),十位上的数字是y,用含x的代数式表示y.21.(2022秋•金凤区校级月考)阅读理解并解答:【方法呈现】(1)我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式.在运用完全平方公式进行因式分解时,关键是判断这个多项式是不是一个完全平方式,同样地,把一个多项式进行局部因式分解可以来解决代数式值的最小(或最大)问题.例如:x2+2x+3=(x2+2x+1)+2=(x+1)2+2,∵(x+1)2≥0,∴(x+1)2+2≥2.则这个代数式x2+2x+3的最小值是,这时相应的x的值是.【尝试应用】(2)求代数式﹣x2+14x+10的最小(或最大)值,并写出相应的x的值.【拓展提高】(3)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.22.(2022秋•九龙坡区校级期中)阅读下面材料:能被7整除的数的特征为:数字去掉个位数,减去原个位数的2倍,计算得到的差能被7整除;如126,因为12﹣6×2=0,0能被7整除,所以126能被7整除:又如1001,因为100﹣1×2=98,9﹣8×2=﹣7,﹣7能被7整除,所以1001能被7整除;根据阅读材料的方法,解答下列问题:(1)如何判断364能否被7整除?(2)一个三位数的百位数字是2,个位数字是7,如果这个三位数能被7整除,那么这个三位数是多少?(3)说明为什么满足材料中特征的三位数可以被7整除.23.(2021秋•桐柏县月考)如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n(以上长度单位:cm).(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小长方形的面积为20cm2,四个正方形的面积和为162cm2.①试求图中所有裁剪线(虚线部分)长度之和;②求(m﹣n)2的值.24.(2021秋•隆昌市校级月考)(阅读材料)把形如ax2+bx+c的二次三项式(或其一部分)经过适当变形配成完全平方式的方法叫配方法,配方法在因式分解、证明恒等式.利用a2≥0求代数式最值等问题中都有广泛应用.例如:利用配方法将x2﹣6x+8变形为a(x+m)2+n的形式,并把二次三项式分解因式.配方:x2﹣6x+8=x2﹣6x+32﹣32+8=(x﹣3)2﹣1.分解因式:x2﹣6x+8=(x﹣3)2﹣1=(x﹣3+1)(x﹣3﹣1)=(x﹣2)(x﹣4).(解决问题)根据以上材料,解答下列问题:(1)利用配方法将多项式x2﹣4x﹣5化成a(x+m)2+n的形式;(2)利用配方法把二次三项式x2﹣2x﹣35分解因式;(3)若a、b、c分别是△ABC的三边,且a2+2b2+3c2﹣2ab﹣2b﹣6c+4=0,试判断△ABC的形状,并说明理由;(4)求证:无论x,y取任何实数,代数式x2+y2+4x﹣6y+15的值恒为正数.25.(2021春•萧山区校级月考)对于一个图形,通过不同的方法计算图形的面积,可以得到一个数学等式.例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=10,ab+bc+ac=27,求a2+b2+c2的值;(3)如图3,有足够多的边长为a的大正方形纸片、边长为b的小正方形纸片以及长为a宽为b的长方形纸片,取若干张(三种图形都要取到)拼成一个长方形.①若面积为(2a+b)(a+3b),则取了边长为b的小正方形纸片张;②若用6张边长为a的大正方形纸片,3张边长为b的小正方形纸片,11张长为a宽为b的长方形纸片恰好拼成一个正方形,求实数a,b满足的关系式.26.(2021春•鼓楼区期末)对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以,F(123)=6.(1)计算:F(243),F(761)的值;(2)已知一个相异数p,且p=100a+10b+c,(其中a,b,c均为小于10的正整数),则F(p)=,(3)若m,n都是“相异数”,其中m=100x+23,n=150+y(1≤x≤9,1≤y≤9且x,y都是正整数),若k=,当F(m)+F(n)=16时,求k的值.27.(2020秋•天元区期中)教科书中这样写道:“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式x2+2x﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);例如求代数式2x2+4x﹣6的最小值.2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2﹣4m﹣5=.(2)当a,b为何值时,多项式2a2+3b2﹣4a+12b+18有最小值,并求出这个最小值.(3)当a,b为何值时,多项式a2﹣4ab+5b2﹣4a+4b+27有最小值,并求出这个最小值.28.(2022秋•密云区期末)阅读材料,解决问题.数学活动课上,晓文同学提出一个猜想:一个两位数,其十位

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论