版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届海南省北师大万宁附中高一数学第二学期期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知的三个内角所对的边分别为,满足,且,则的形状为()A.等边三角形 B.等腰直角三角形C.顶角为的等腰三角形 D.顶角为的等腰三角形2.如图,在长方体中,,,,分别是,的中点则异面直线与所成角的余弦值为()A. B. C. D.3.已知圆与圆有3条公切线,则()A. B.或 C. D.或4.在中,,则=()A. B. C. D.5.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著,在这部著作中,许多数学问题都是以歌诀形式呈现的.“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问小儿多少岁,各儿岁数要谁推,这位公公年龄最小的儿子年龄为()A.8岁 B.11岁 C.20岁 D.35岁6.在△ABC中,,,.的值为()A. B. C. D.7.在区间内随机取一个实数a,使得关于x的方程有实数根的概率为()A. B. C. D.8.在数列中,,且数列是等比数列,其公比,则数列的最大项等于()A. B. C.或 D.9.如图,随机地在图中撒一把豆子,则豆子落到阴影部分的概率是()A.12 B.34 C.110.已知,若,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,角为直角,线段上的点满足,若对于给定的是唯一确定的,则_______.12.若锐角满足则______.13.化简:________14.某四棱锥的三视图如图所示,如果网格纸上小正方形的边长为1,那么该四棱锥最长棱的棱长为.15.如图,正方体中,的中点为,的中点为,为棱上一点,则异面直线与所成角的大小为__________.16.已知实数,是与的等比中项,则的最小值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知A、B分别在射线CM、CN(不含端点C)上运动,∠MCN=23π(Ⅰ)若a、b、(Ⅱ)若c=3,∠ABC=θ,试用θ表示ΔABC18.已知数列满足,();(1)求、、;(2)猜想数列的通项公式;(3)用数学归纳法证明你的猜想;19.函数.(1)求函数的周期和递增区间;(2)若,求函数的值域.20.如图,已知平面是正三角形,.(1)求证:平面平面;(2)求二面角的正切值.21.某校为创建“绿色校园”,在校园内种植树木,有A、B、C三种树木可供选择,已知这三种树木6年内的生长规律如下:A树木:种植前树木高0.84米,第一年能长高0.1米,以后每年比上一年多长高0.2米;B树木:种植前树木高0.84米,第一年能长高0.04米,以后每年生长的高度是上一年生长高度的2倍;C树木:树木的高度(单位:米)与生长年限(单位:年,)满足如下函数:(表示种植前树木的高度,取).(1)若要求6年内树木的高度超过5米,你会选择哪种树木?为什么?(2)若选C树木,从种植起的6年内,第几年内生长最快?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
先利用同角三角函数基本关系得,结合正余弦定理得进而得B,再利用化简得,得A值进而得C,则形状可求【详解】由题即,由正弦定理及余弦定理得即故整理得,故故为顶角为的等腰三角形故选D【点睛】本题考查利用正余弦定理判断三角形形状,注意内角和定理,三角恒等变换的应用,是中档题2、A【解析】
连结,由,可知异面直线与所成角是,分别求出,然后利用余弦定理可求出答案.【详解】连结,因为,所以异面直线与所成角是,在中,,,,所以.故选A.【点睛】本题考查了异面直线的夹角,考查了利用余弦定理求角,考查了计算能力,属于中档题.3、B【解析】
由两圆有3条公切线,可知两圆外切,则圆心距等于两圆半径之和,求解即可.【详解】由题意,圆与圆外切,所以,即,解得或.【点睛】本题考查了两圆外切的性质,考查了计算能力,属于基础题.4、C【解析】
解:因为由正弦定理,所以又c<a所以,所以5、B【解析】
九个儿子的年龄成等差数列,公差为1.【详解】由题意九个儿子的年龄成等差数列,公差为1.记最小的儿子年龄为a1,则S9=9故选B.【点睛】本题考查等差数列的应用,解题关键正确理解题意,能用数列表示题意并求解.6、B【解析】
由正弦定理列方程求解。【详解】由正弦定理可得:,所以,解得:.故选:B【点睛】本题主要考查了正弦定理,属于基础题。7、C【解析】
由关于x的方程有实数根,求得,再结合长度比的几何概型,即可求解,得到答案.【详解】由题意,关于x的方程有实数根,则满足,解得,所以在区间内随机取一个实数a,使得关于x的方程有实数根的概率为.故选:C.【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A的基本事件对应的“几何度量”,再求出总的基本事件对应的“几何度量”,然后根据求解,着重考查了分析问题和解答问题的能力,属于基础题.8、C【解析】
在数列中,,,且数列是等比数列,其公比,利用等比数列的通项公式可得:.可得,利用二次函数的单调性即可得出.【详解】在数列中,,,且数列是等比数列,其公比,.,.由或8时,,或9时,,数列的最大项等于或.故选:C.【点睛】本题考查等比数列的通项公式、累乘法、二次函数的单调性,考查推理能力与计算能力,属于中档题.9、D【解析】
求出阴影部分的面积,然后与圆面积作比值即得.【详解】圆被8等分,其中阴影部分有3分,因此所求概率为P=3故选D.【点睛】本题考查几何概型,属于基础题.10、C【解析】
由,得,则,则.【考点定位】二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
设,根据已知先求出x的值,再求的值.【详解】设,则.依题意,若对于给定的是唯一的确定的,函数在(1,)是增函数,在(,+)是减函数,所以,此时,.故答案为【点睛】本题主要考查对勾函数的图像和性质,考查差角的正切的计算和同角的三角函数的关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.12、【解析】
由已知利用同角三角函数基本关系式可求,的值,利用两角差的余弦公式即可计算得解.【详解】、为锐角,,,,,,.故答案为:.【点睛】本题主要考查了同角三角函数基本关系式,两角差的余弦函数公式在三角函数化简求值中的应用,属于基础题.13、【解析】
根据三角函数的诱导公式,准确运算,即可求解.【详解】由题意,可得.故答案为:.【点睛】本题主要考查了三角函数的诱导公式的化简、求值问题,其中解答中熟记三角函数的诱导公式,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.14、【解析】
先通过拔高法还原三视图为一个四棱锥,再根据图像找到最长棱计算即可。【详解】根据拔高法还原三视图,可得斜棱长最长,所以斜棱长为。【点睛】此题考查简单三视图还原,关键点通过拔高法将三视图还原易求解,属于较易题目。15、【解析】
根据题意得到直线MP运动起来构成平面,可得到面,进而得到结果.【详解】取的中点O连接,,根据题意可得到直线MP是一条动直线,当点P变动时直线就构成了平面,因为MO均为线段的中点,故得到,四边形为平行四边形,面,故得到,又面,进而得到.故夹角为.故答案为.【点睛】这个题目考查的是异面直线的夹角的求法;常见方法有:将异面直线平移到同一平面内,转化为平面角的问题;或者证明线面垂直进而得到面面垂直,这种方法适用于异面直线垂直的时候.16、【解析】
通过是与的等比中项得到,利用均值不等式求得最小值.【详解】实数是与的等比中项,,解得.则,当且仅当时,即时取等号.故答案为:.【点睛】本题考查了等比中项,均值不等式,1的代换是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)c=7或c=2.(1)=2sinθ+2【解析】试题分析:(Ⅰ)由题意可得a=c-4、b=c-1.又因∠MCN=π,,可得恒等变形得c1-9c+14=0,再结合c>4,可得c的值.(Ⅱ)在△ABC中,由正弦定理可得AC=1sⅠnθ,BC=,△ABC的周长f(θ)=|AC|+|BC|+|AB|=,再由利用正弦函数的定义域和值域,求得f(θ)取得最大值.试题解析:(Ⅰ)∵a、b、c成等差,且公差为1,∴a=c-4、b=c-1.又因∠MCN=π,,可得,恒等变形得c1-9c+14=0,解得c=2,或c=1.又∵c>4,∴c=2.(Ⅱ)在△ABC中,由正弦定理可得.∴△ABC的周长f(θ)=|AC|+|BC|+|AB|=,又,当,即时,f(θ)取得最大值.考点:1.余弦定理;1.正弦定理18、(1),,;(2);(3)证明见解析;【解析】
(1)根据数列的递推关系式,代入运算,即可求解、、;(2)由(1)可猜想得;(3)利用数学归纳法,即可证得猜想是正确的.【详解】(1)由题意,数列满足,();所以,,;(2)由(1)可猜想得;(3)①当时,,上式成立;②假设当时,成立,则当时,由①②可得,当时,成立,即数列的通项公式为.【点睛】本题主要考查了数列的递推关系式的应用,以及数学归纳法的证明,其中解答中根据数列的递推公式,准确计算,同时熟记数学归纳法的证明方法是解答的关键,着重考查了推理与论证能力,属于基础题.19、(1)周期为,单调递增区间为;(2).【解析】
(1)利用二倍角降幂公式、两角差的正弦公式将函数的解析式化简为,然后利用周期公式可计算出函数的周期,解不等式即可得出函数的单调递增区间;(2)由计算出的取值范围,可得出的范围,进而可得出函数的值域.【详解】(1),所以,函数的周期为,由,解得,因此,函数的单调递增区间为;(2)当时,,则,,因此,函数在区间上的值域为.【点睛】本题考查正弦型三角函数周期、单调区间以及值域的求解,解题的关键就是利用三角恒等变换思想将解析式进行化简,考查运算求解能力,属于中等题.20、(1)证明见解析;(2).【解析】
(1)取的中点的中点,证明,由根据线面垂直判定定理可得,可得平面,结合面面垂直的判定定理,可得平面平面;
(2)过作,连接BM,可以得到为二面角的平面角,解三角形即可求出二面角的正切值.【详解】解:(1)取BE的中点F.
AE的中点G,连接GD,CF∴,GF∥AB又∵,CD∥AB∴CD∥GF,CD=GF,∴CFGD是平行四边形,∴CF∥GD,又∵CF⊥BF,CF⊥AB∴CF⊥平面ABE∵CF∥DG∴DG⊥平面ABE,∵DG⊂平面ABE∴平面ABE⊥平面ADE;(2)∵AB=BE,∴AE⊥BG,∴BG⊥平面ADE,过G作GM⊥DE,连接BM,则BM⊥DE,则∠BMG为二面角A−DE−B的平面角,设AB=BC=2CD=2,则,在Rt△DCE中,CD=1,CE=2,∴,又,由DE⋅GM=DG⋅EG得,所以,故面角的正切值为:.【点睛】本题考查了面面垂直的判定定理及二面角的平面角的作法,重点考查了空间想象能力,属中档题.21、(1)选择C;(2)第4或第5年.【解析】
(1)根据已知求出三种树木六年末的高度,判断得解;(2)设为第年内树木生长的高度,先求出,设,则,.再利用分析函数的单调性,分析函数的图像得解.【详解】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 头发脱色剂产业链招商引资的调研报告
- 外包服务商业辅助行业相关项目经营管理报告
- 分配药品用医院推车产业链招商引资的调研报告
- 个性化遗传咨询行业市场调研分析报告
- 2024内蒙古呼伦贝尔满洲里市事业单位人才回引18人笔试模拟试题及答案解析
- 班级小型演出策划与准备计划
- 班主任奉献爱心播撒阳光计划
- 班级未来发展方向的研讨会计划
- 落实精细化管理的具体措施计划
- 2024-2025部编版语文一年级上册阅读7两件宝
- 公司内部招标工作流程
- 实验室质量监控
- 工程款欠条(模板)
- 应用型本科高校基础课程体系教学改革之设计速写课程改革探讨
- 福建省高速公路招标做法讲义
- 地震资料解释_第七章
- 养殖场动物防疫条件自查表
- 钱塘江河口概况
- 全国中学生物理竞赛集锦(电磁学)
- 【doc】气田单井经济极限产量研究
- 2021年基站用电协议书3篇
评论
0/150
提交评论