![安徽亳州利辛县阚疃金石中学2023-2024学年高一数学第二学期期末学业质量监测模拟试题含解析_第1页](http://file4.renrendoc.com/view14/M04/10/17/wKhkGWZnr2OAWJbEAAIlK4UzIYY091.jpg)
![安徽亳州利辛县阚疃金石中学2023-2024学年高一数学第二学期期末学业质量监测模拟试题含解析_第2页](http://file4.renrendoc.com/view14/M04/10/17/wKhkGWZnr2OAWJbEAAIlK4UzIYY0912.jpg)
![安徽亳州利辛县阚疃金石中学2023-2024学年高一数学第二学期期末学业质量监测模拟试题含解析_第3页](http://file4.renrendoc.com/view14/M04/10/17/wKhkGWZnr2OAWJbEAAIlK4UzIYY0913.jpg)
![安徽亳州利辛县阚疃金石中学2023-2024学年高一数学第二学期期末学业质量监测模拟试题含解析_第4页](http://file4.renrendoc.com/view14/M04/10/17/wKhkGWZnr2OAWJbEAAIlK4UzIYY0914.jpg)
![安徽亳州利辛县阚疃金石中学2023-2024学年高一数学第二学期期末学业质量监测模拟试题含解析_第5页](http://file4.renrendoc.com/view14/M04/10/17/wKhkGWZnr2OAWJbEAAIlK4UzIYY0915.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽亳州利辛县阚疃金石中学2023-2024学年高一数学第二学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角、、所对的边长分别为,,,,,,则的面积为()A. B. C. D.92.在中,内角,,的对边分别为,,,若,,,则的最小角为()A. B. C. D.3.如图,在圆心角为直角的扇形中,分别以为直径作两个半圆,在扇形内随机取一点,则此点取自阴影部分的概率是()A. B. C. D.4.已知向量满足,.O为坐标原点,.曲线,区域.若是两段分离的曲线,则()A. B. C. D.5.一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,从中任意取出一个,则取出的小正方体两面涂有油漆的概率是()A.127 B.29 C.46.已知在三角形中,,点都在同一个球面上,此球面球心到平面的距离为,点是线段的中点,则点到平面的距离是()A. B. C. D.17.已知集合,则().A. B. C. D.8.已知是第一象限角,那么是()A.第一象限角 B.第二象限角C.第一或第二象限角 D.第一或第三象限角9.设函数,则()A.在单调递增,且其图象关于直线对称B.在单调递增,且其图象关于直线对称C.在单调递减,且其图象关于直线对称D.在单调递增,且其图象关于直线对称10.实数数列为等比数列,则()A.-2 B.2 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若圆与圆的公共弦长为,则________.12.已知函数,则函数的最小值是___.13.将正整数按下图方式排列,2019出现在第行第列,则______;12345678910111213141516………14.圆锥的底面半径是3,高是4,则圆锥的侧面积是__________.15.若圆:与圆:相交于,两点,且两圆在点处的切线互相垂直,则公共弦的长度是______.16.如图,为了测量树木的高度,在处测得树顶的仰角为,在处测得树顶的仰角为,若米,则树高为______米.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.正项数列的前n项和Sn满足:(1)求数列的通项公式;(2)令,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn<.18.定义:对于任意,满足条件且(是与无关的常数)的无穷数列称为数列.(1)若,证明:数列是数列;(2)设数列的通项为,且数列是数列,求常数的取值范围;(3)设数列,若数列是数列,求的取值范围.19.设a为实数,函数,(1)若,求不等式的解集;(2)是否存在实数a,使得函数在区间上既有最大值又有最小值?若存在,求出实数a的取值范围;若不存在,请说明理由;(3)写出函数在R上的零点个数(不必写出过程).20.如图,函数,其中的图象与y轴交于点.(1)求的值;(2)求函数的单调递增区间;(3)求使的x的集合.21.一只红铃虫的产卵数和温度有关,现收集了4组观测数据列于下表中,根据数据作出散点图如下:温度20253035产卵数/个520100325(1)根据散点图判断与哪一个更适宜作为产卵数关于温度的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立关于的回归方程(数字保留2位小数);(3)要使得产卵数不超过50,则温度控制在多少以下?(最后结果保留到整数)参考数据:,,,,,,,,,,5201003251.6134.615.78
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
,利用正弦定理,和差公式化简可得,再利用三角形面积计算公式即可得出.【详解】化为:的面积故选:【点睛】本题考查正弦定理与两角和余弦公式化简求值,属于基础题.2、A【解析】
由三角形大边对大角可知所求角为角,利用余弦定理可求得,进而得到结果.【详解】的最小角为角,则故选:【点睛】本题考查利用余弦定理解三角形的问题,关键是明确三角形中大边对大角的特点,进而根据余弦定理求得所求角的余弦值.3、A【解析】试题分析:设扇形半径为,此点取自阴影部分的概率是,故选B.考点:几何概型.【方法点晴】本题主要考查几何概型,综合性较强,属于较难题型.本题的总体思路较为简单:所求概率值应为阴影部分的面积与扇形的面积之比.但是,本题的难点在于如何求阴影部分的面积,经分析可知阴影部分的面积可由扇形面积减去以为直径的圆的面积,再加上多扣一次的近似“椭圆”面积.求这类图形面积应注意切割分解,“多还少补”.4、A【解析】
由圆的定义及平面向量数量积的性质及其运算可得:点P在以O为圆心,r为半径的圆上运动且点P在以Q为圆心,半径为1和2的圆环区域运动,由图可得解.【详解】建立如图所示的平面直角坐标系,则,,由,则,即点P在以O为圆心,r为半径的圆上运动,又,则点P在以Q为圆心,半径为1和2的圆环区域运动,由图可知:当C∩Ω是两段分离的曲线时,r的取值范围为:3<r<5,故选:A.【点睛】本题考查平面向量数量积的性质及其运算,利用数形结合思想,将向量问题转化为圆与圆的位置关系问题,考查转化与化归思想,属于中等题.5、C【解析】
先求出基本事件总数n=27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,由此能求出在27个小正方体中,任取一个其两面涂有油漆的概率.【详解】∵一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,∴基本事件总数n=27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,则在27个小正方体中,任取一个其两面涂有油漆的概率P=1227=故选:C【点睛】本题考查概率的求法,考查古典概型、正方体性质等基础知识,考查推理论证能力、空间想象能力,考查函数与方程思想,是基础题.6、D【解析】
利用数形结合,计算球的半径,可得半径为2,进一步可得该几何体为正四面体,可得结果.【详解】如图据题意可知:点都在同一个球面上可知为的外心,故球心必在过且垂直平面的垂线上因为,所以球心到平面的距离为即,又所以同理可知:所以该几何体为正四面体,由点是线段的中点所以,且平面,故平面所以点到平面的距离是故选:D【点睛】本题考查空间几何体的应用,以及点到面的距离,本题难点在于得到该几何体为正四面体,属中档题.7、B【解析】
求解一元二次不等式的解集,化简集合的表示,最后运用集合交集的定义,结合数轴求出.【详解】因为,所以,故本题选B.【点睛】本题考查了一元二次不等式的解法,考查了集合交集的运算,正确求解一元二次不等式的解集、运用数轴是解题的关键.8、D【解析】
根据象限角写出的取值范围,讨论即可知在第一或第三象限角【详解】依题意得,则,当时,是第一象限角当时,是第三象限角【点睛】本题主要考查象限角,属于基础题.9、B【解析】
先将函数化简,再根据三角函数的图像性质判断单调性和对称性,从而选择答案.【详解】
根据选项有,当时,在在上单调递增.又即为的对称轴.当时,为的对称轴.故选:B【点睛】本题考查的单调性和对称性质,属于中档题.10、B【解析】
由等比数列的性质计算,注意项与项之间的关系即可.【详解】由题意,,又与同号,∴.故选B.【点睛】本题考查等比数列的性质,解题时要注意等比数列中奇数项同号,偶数项同号.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】将两个方程两边相减可得,即代入可得,则公共弦长为,所以,解之得,应填.12、5【解析】因为,所以,函数,当且仅当,即时等号成立.点睛:本题考查了基本不等式的应用,属于基础题.在用基本不等式时,注意"一正二定三相等"这三个条件,关键是找定值,在本题中,将拆成,凑成定值,再用基本不等式求出最小值.13、128【解析】
观察数阵可知:前行一共有个数,且第行的最后一个数为,且第行有个数,由此可推断出所在的位置.【详解】因为前行一共有个数,且第行的最后一个数为,又因为,所以在第行,且第45行最后数为,又因为第行有个数,,所以在第列,所以.故答案为:.【点睛】本题考查数列在数阵中的应用,着重考查推理能力,难度一般.分析数列在数阵中的应用问题,可从以下点分析问题:观察每一行数据个数与行号关系,同时注意每一行开始的数据或结尾数据,所有行数据的总个数,注意等差数列的求和公式的运用.14、【解析】分析:由已知中圆锥的底面半径是,高是,由勾股定理,我们可以计算出圆锥的母线长,代入圆锥侧面积公式,即可得到结论.详解:圆锥的底面半径是,高是,圆锥的母线长,则圆锥侧面积公式,故答案为.点睛:本题主要考查圆锥的性质与圆锥侧面积公式,意在考查对基本公式的掌握与理解,属于简单题.15、【解析】
根据两圆在点处的切线互相垂直,得出是直角三角形,求出,然后两圆相减求出公共弦的直线方程,运用点到直线的距离公式求出圆心到公共弦的距离,进而求出公共弦长.【详解】由题意,圆圆心坐标,半径,圆圆心坐标,半径,因为两圆相交于点,且两圆在点处的切线互相垂直,所以是直角三角形,,所以,由两点间距离公式,,所以,解得,所以圆:,两圆方程相减,得,即,所以公共弦:,圆心到公共弦的距离,故公共弦长故答案为:【点睛】本题主要考查两圆公共弦的方程、圆弦长的求法和点到直线的距离公式,考查学生的分析能力,属于基础题.16、【解析】
先计算,再计算【详解】在处测得树顶的仰角为,在处测得树顶的仰角为则在中,故答案为【点睛】本题考查了三角函数的应用,也可以用正余弦定理解答.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】
(1)因为数列的前项和满足:,所以当时,,即解得或,因为数列都是正项,所以,因为,所以,解得或,因为数列都是正项,所以,当时,有,所以,解得,当时,,符合所以数列的通项公式,;(2)因为,所以,所以数列的前项和为:,当时,有,所以,所以对于任意,数列的前项和.18、(1)证明见解析;(2);(3).【解析】
(1)根据题中的新定义代入即可证出.(2)设,,,代入通项解不等式组,使即可求解.(3)首先根据可求时,,当时,,根据题中新定义求出成立,可得,再验证恒成立即可求解.【详解】(1),且,则满足,则数列是数列.综上所述,结论是:数列是数列.(2)设,,则,得,,,则数列的最大值为,则(3),当时,当时,,由,得,当时,恒成立,则要使数列是数列,则的取值范围为.【点睛】本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.19、(1)(2)不存在这样的实数,理由见解析(3)见解析【解析】
(1)代入的值,通过讨论的范围,求出不等式的解集即可;(2)通过讨论的范围,求出函数的单调区间,再求出函数的最值,得到关于的不等式组,解出并判断即可;(3)通过讨论的范围,判断函数的零点个数即可【详解】(1)当时,,则当时,,解得或,故;当时,,解集为,综上,的解集为(2),显然,,①当时,则在上单调递增,在上单调递减,在上单调递增,因为函数在上既有最大值又有最小值,所以,,则,即,解得,故不存在这样的实数;②当时,则在上单调递增,在上单调递减,在上单调递增,因为函数在上既有最大值又有最小值,故,,则,即,解得,故不存在这样的实数;③当时,则为上的递增函数,故函数在上不存在最大值和最小值,综上,不存在这样的实数(3)当或时,函数的零点个数为1;当或时,函数的零点个数为2;当时,函数的零点个数为3【点睛】本题考查分段函数的应用,考查利用函数的单调性求最值,考查函数的零点个数,着重考查分类讨论思想20、(1),(2),,(3)【解析】
(1)由函数图像过定点,代入运算即可得解;(2)由三角函数的单调增区间的求法求解即可;(3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度特色民宿体验住宿协议
- 二零二五年度消防设备定制设计与销售合同
- 二零二五年度农产品线上线下一体化购销合同标准
- 施工现场施工防传染病传播制度
- 个人兼职用工合同模板
- 乡村别墅租赁合同样本
- 二手房买卖双方合同模板
- 事业单位合同到期人员停薪留职新政
- 个人与个人汽车租赁合同示范文本
- 中外科研合作合同(四):专有技术共享
- 2024年中国铁路投资集团有限公司招聘笔试参考题库含答案解析
- 运动训练与康复治疗培训资料
- 小班绘本教学《藏在哪里了》课件
- 老师呀请你别生气教学反思
- 变压器更换施工方案
- 安徽新宸新材料有限公司年产6000吨锂离子电池材料双氟磺酰亚胺锂项目环境影响报告书
- 日本酒类消费行业市场分析报告
- GB/T 29594-2013可再分散性乳胶粉
- 西子奥的斯电梯ACD2调试说明书
- 成长感恩责任高中主题班会-课件
- 建设项目全过程工程咨询服务指引(咨询企业版)(征求意见稿)
评论
0/150
提交评论