2024届甘肃省宁县数学高一下期末检测试题含解析_第1页
2024届甘肃省宁县数学高一下期末检测试题含解析_第2页
2024届甘肃省宁县数学高一下期末检测试题含解析_第3页
2024届甘肃省宁县数学高一下期末检测试题含解析_第4页
2024届甘肃省宁县数学高一下期末检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃省宁县数学高一下期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.办公室装修一新,放些植物花草可以清除异味,公司提供绿萝、文竹、碧玉、芦荟4种植物供员工选择,每个员工任意选择2种,则员工甲和乙选择的植物全不同的概率为:A. B. C. D.2.若抛物线上一点到焦点的距离是该点到轴距离的3倍,则()A. B. C. D.73.下列函数中,在区间上为增函数的是().A. B. C. D.4.下图是500名学生某次数学测试成绩(单位:分)的频率分布直方图,则这500名学生中测试成绩在区间[90,100)中的学生人数是A.60 B.55 C.45 D.505.等差数列中,,则的值为()A.14 B.17 C.19 D.216.函数的最小正周期是()A. B. C. D.7.若,则下列不等式成立的是A. B. C. D.8.某几何体三视图如图所示,则该几何体中的棱与面相互平行的有()A.2对 B.3对 C.4对 D.5对9.将的图象向左平移个单位长度,再向下平移个单位长度得到的图象,若,则()A. B. C. D.10.将一个总体分为甲、乙、丙三层,其个体数之比为,若用分层抽样的方法抽取容量为200的样本,则应从丙层中抽取的个体数为()A.20 B.40 C.60 D.100二、填空题:本大题共6小题,每小题5分,共30分。11.已知点是所在平面内的一点,若,则__________.12.函数的零点个数为__________.13.若x、y满足约束条件,则的最大值为________.14.已知向量(1,x2),(﹣2,y2﹣2),若向量,共线,则xy的最大值为_____.15.已知,,则当最大时,________.16.若数列的前项和,满足,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;18.已知的内角A,B,C所对的边分别为a,b,c,其外接圆的面积为,且.(1)求边长c;(2)若的面积为,求的周长.19.某中学高二年级的甲、乙两个班中,需根据某次数学预赛成绩选出某班的5名学生参加数学竞赛决赛,已知这次预赛他们取得的成绩的茎叶图如图所示,其中甲班5名学生成绩的平均分是83,乙班5名学生成绩的中位数是1.(1)求出x,y的值,且分别求甲、乙两个班中5名学生成绩的方差、,并根据结果,你认为应该选派哪一个班的学生参加决赛?(2)从成绩在85分及以上的学生中随机抽取2名.求至少有1名来自甲班的概率.20.(1)设,直接用任意角的三角比定义证明:.(2)给出两个公式:①;②.请仅以上述两个公式为已知条件证明:.21.某公司为了提高工效,需分析该公司的产量台与所用时间小时之间的关系,为此做了四次统计,所得数据如下:产品台数台2345所用时间小时34求出y关于x的线性回归方程;预测生产10台产品需要多少小时?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

从公司提供的4中植物中任意选择2种,求得员工甲和乙共有种选法,再由任选2种有种,得到员工甲和乙选择的植物全不同有种选法,利用古典概型的概率计算公式,即可求解.【详解】由题意,从公司提供绿萝、文竹、碧玉、芦荟4种植物每个员工任意选择2种,则员工甲和乙共有种不同的选法,又从公司提供绿萝、文竹、碧玉、芦荟4种植物中,任选2种,共有种选法,则员工甲和乙选择的植物全不同,共有种不同的选法,所以员工甲和乙选择的植物全不同的概率为,故选A.【点睛】本题主要考查了古典概型及其概率的计算,以及排列、组合的应用,其中解答中认真审题,合理利用排列、组合求得基本事件的个数,利用古典概型的概率计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.2、A【解析】由题意,焦点坐标,所以,解得,故选A。3、B【解析】试题分析:根据初等函数的图象,可得函数在区间(0,1)上的单调性,从而可得结论.解:由题意,A的底数大于0小于1、C是图象在一、三象限的单调减函数、D是余弦函数,,在(0,+∞)上不单调,B的底数大于1,在(0,+∞)上单调增,故在区间(0,1)上是增函数,故选B考点:函数的单调性点评:本题考查函数的单调性,掌握初等函数的图象与性质是关键.4、D【解析】分析:根据频率分布直方图可得测试成绩落在中的频率,从而可得结果.详解:由频率分布直方图可得测试成绩落在中的频率为,所以测试成绩落在中的人数为,,故选D.点睛:本题主要考查频率分布直方图的应用,属于中档题.直观图的主要性质有:(1)直方图中各矩形的面积之和为;(2)组距与直方图纵坐标的乘积为该组数据的频率.5、B【解析】

利用等差数列的性质,.【详解】,解得:.故选B.【点睛】本题考查了等比数列的性质,属于基础题型.6、C【解析】

将函数化为,再根据周期公式可得答案.【详解】因为=,所以最小正周期.故选:C【点睛】本题考查了两角和的正弦公式的逆用,考查了正弦型函数的周期公式,属于基础题.7、C【解析】

利用的单调性直接判断即可。【详解】因为在上递增,又,所以成立。故选:C【点睛】本题主要考查了幂函数的单调性,属于基础题。8、C【解析】

本道题结合三视图,还原直观图,结合直线与平面判定,即可。【详解】结合三视图,还原直观图,得到AB平行平面OCD,DC平行平面OBA,BC平行平面ODA,DA平行平面OBC,故有4对。故选C。【点睛】本道题考查了三视图还原直观图,难度中等。9、D【解析】因为,所以,因此,选D.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.10、B【解析】

求出丙层所占的比例,然后求出丙层中抽取的个体数【详解】因为甲、乙、丙三层,其个体数之比为,所以丙层所占的比例为,所以应从丙层中抽取的个体数为,故本题选B.【点睛】本题考查了分层抽样中某一层抽取的个体数的问题,考查了数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

设为的中点,为的中点,为的中点,由得到,再进一步分析即得解.【详解】如图,设为的中点,为的中点,为的中点,因为,所以可得,整理得.又,所以,所以,又,所以.故答案为【点睛】本题主要考查向量的运算法则和共线向量,意在考查学生对这些知识的理解掌握水平,解答本题的关键是作辅助线,属于中档题.12、3【解析】

运用三角函数的诱导公式先将函数化简,再在同一直角坐标系中做出两支函数的图像,观察其交点的个数即得解.【详解】由三角函数的诱导公式得,所以令,求零点的个数转化求方程根的个数,因此在同一直角坐标系分别做出和的图象,观察两支图象的交点的个数为个,注意在做的图像时当时,,故得解.【点睛】本题考查三角函数的有界性和余弦函数与对数函数的交点情况,属于中档题.13、18【解析】

先作出不等式组所表示的平面区域,再观察图像即可得解.【详解】解:作出不等式组所表示的平面区域,如图所示,由图可得:目标函数所在直线过点时,取最大值,即,故答案为:.【点睛】本题考查了简单的线性规划问题,重点考查了作图能力,属基础题.14、【解析】

由题意利用两个向量共线的性质,两个向量坐标形式的运算,可得,再利用基本不等式,求得的最大值.【详解】向量,,若向量,共线,则,,即,当且仅当,时,取等号.故的最大值为,故答案为:.【点睛】本题主要考查两个向量共线的性质,考查两个向量坐标形式的运算和基本不等式,属于基础题.15、【解析】

根据正切的和角公式,将用的函数表示出来,利用均值不等式求最值,求得取得最大值的,再用倍角公式即可求解.【详解】故可得则当且仅当,即时,此时有故答案为:.【点睛】本题考查正切的和角公式,以及倍角公式,涉及均值不等式的使用.16、【解析】

令,得出,令,由可计算出在时的表达式,然后就是否符合进行检验,由此可得出.【详解】当时,;当时,则.也适合.综上所述,.故答案为:.【点睛】本题考查利用求,一般利用来计算,但需要对进行检验,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析;【解析】

(1)要证BD⊥平面PAC,只需在平面PAC上找到两条直线跟BD垂直即证,显然,从平面中可证,即证.(2)要证明平面PAB⊥平面PAE,可证平面即可.【详解】(1)证明:因为平面,所以;因为底面是菱形,所以;因为,平面,所以平面.(2)证明:因为底面是菱形且,所以为正三角形,所以,因为,所以;因为平面,平面,所以;因为所以平面,平面,所以平面平面.【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.18、(1)(2)【解析】

(1)计算得到,,利用正弦定理计算得到答案.(2)根据余弦定理得到,根据面积公式得到,得到答案.【详解】(1),.,.,,.(2)由余弦定理得:.,,,,.的周长为.【点睛】本题考查了正弦定理,余弦定理和面积公式,意在考查学生的计算能力.19、(3)甲班参加;(4).【解析】

试题分析:(3)由题意知求出x=5,y=4.从而求出乙班学生的平均数为83,分别求出S34和S44,根据甲、乙两班的平均数相等,甲班的方差小,得到应该选派甲班的学生参加决赛.(4)成绩在85分及以上的学生一共有5名,其中甲班有4名,乙班有3名,由此能求出随机抽取4名,至少有3名来自甲班的概率.试题解析:(3)甲班的平均分为,易知.;又乙班的平均分为,∴;∵,,说明甲班同学成绩更加稳定,故应选甲班参加.(4)分及以上甲班有人,设为;乙班有人,设为,从这人中抽取人的选法有:,共种,其中甲班至少有名学生的选法有种,则甲班至少有名学生被抽到的概率为.考点:3.古典概型及其概率计算公式;4.茎叶图.20、(1)证明见解析(2)证明见解析【解析】

(1)直接利用任意角的三角函数的定义证得.(2)由已知条件利用诱导公式,证明.【详解】解:(1)将角的顶点置于平面直角坐标系的原点,始边与轴的正半轴重合,设角终边一点(非原点),其坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论