版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省江阴市暨阳中学2024届数学高一下期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某班的60名同学已编号1,2,3,…,60,为了解该班同学的作业情况,老师收取了号码能被5整除的12名同学的作业本,这里运用的抽样方法是()A.简单随机抽样 B.系统抽样C.分层抽样 D.抽签法2.已知,,,,那么()A. B. C. D.3.内角,,的对边分别为,,.已知,,,则这样的三角形有()A.0个 B.1个 C.2个 D.1个或2个4.已知,则().A. B. C. D.5.若关于的方程,当时总有4个解,则可以是()A. B. C. D.6.在等差数列中,已知,数列的前5项的和为,则()A. B. C. D.7.已知某7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的方差为()A. B.3 C. D.48.已知中,,,为边上的中点,则()A.0 B.25 C.50 D.1009.在△ABC中,已知,P为线段AB上的点,且的最大值为()A.3B.4C.5D.610.已知角的顶点与原点重合,始边与轴非负半轴重合,终边过点,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知正实数a,b满足2a+b=1,则1a12.给出下列四个命题:①正切函数在定义域内是增函数;②若函数,则对任意的实数都有;③函数的最小正周期是;④与的图象相同.以上四个命题中正确的有_________(填写所有正确命题的序号)13.设为三条不同的直线,为两个不同的平面,给出下列四个判断:①若则;②若是在内的射影,,则;③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;④若球的表面积扩大为原来的16倍,则球的体积扩大为原来的32倍;其中正确的为___________.14.等差数列中,公差.则与的等差中项是_____(用数字作答)15.已知函数,(常数、),若当且仅当时,函数取得最大值1,则实数的数值为______.16.对于0≤m≤4的任意m,不等式x2+mx>4x+m-3恒成立,则x的取值范围是________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.的内角所对边分别为,已知.(1)求;(2)若,,求的面积.18.已知向量满足,,且向量与的夹角为.(1)求的值;(2)求.19.已知函数(1)解不等式;(2)若对一切,不等式恒成立,求实数的取值范围.20.已知是等差数列的前项和,且,.(1)求通项公式;(2)若,求正整数的值.21.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED为矩形,平面BFED⊥平面ABCD,BF=1.(1)求证:AD⊥平面BFED;(2)点P在线段EF上运动,设平面PAB与平面ADE所成锐二面角为θ,试求θ的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由题意,抽出的号码是5,10,15,…,60,符合系统抽样的特点:“等距抽样”,故选B.2、C【解析】由于故,故,所以.由于,由于,所以,故.综上所述选.3、C【解析】
根据和的大小关系,判断出解的个数.【详解】由于,所以,故解的个数有两个.如图所示两个解.故选:C【点睛】本小题主要考查正弦定理的运用过程中,三角形解的个数判断,属于基础题.4、C【解析】
分子分母同时除以,利用同角三角函数的商关系化简求值即可.【详解】因为,所以,于是有,故本题选C.【点睛】本题考查了同角三角函数的商关系,考查了数学运算能力.5、D【解析】
根据函数的解析式,写出与的解析式,再判断对应方程在时解的个数.【详解】对,,,;方程,当时有4个解,当时有3个解,当时有2个解,不符合;对,,,;方程,当时有2个解,当时有3个解,当时有4个解,不符合;对,,,;方程,当时有4个解,当时有3个解,当时有2个解,不符合;对,,,;方程,当时恒有4个解,符合题意.【点睛】本题考查了函数与方程的应用问题,考查数形结合思想的运用,对综合能力的要求较高.6、C【解析】
由,可求出,结合,可求出及.【详解】设数列的前项和为,公差为,因为,所以,则,故.故选C.【点睛】本题考查了等差数列的前项和,考查了等差数列的通项公式,考查了计算能力,属于基础题.7、C【解析】
由平均数公式求得原有7个数的和,可得新的8个数的平均数,由于新均值和原均值相等,因此由方差公式可得新方差.【详解】因为7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的平均数为,方差为,由平均数和方差的计算公式可得,.故选:C.【点睛】本题考查均值与方差的概念,掌握均值与方差的计算公式是解题关键.8、C【解析】
三角形为直角三角形,CM为斜边上的中线,故可知其长度,由向量运算法则,对式子进行因式分解,由平行四边形法则,求出向量,由长度计算向量积.【详解】由勾股定理逆定理可知三角形为直角三角形,CM为斜边上的中线,所以,原式=.故选C.【点睛】本题考查向量的线性运算及数量积,数量积问题一般要将两个向量转化为已知边长和夹角的两向量,但本题经化简能得到共线的两向量所以直接根据模的大小计算即可.9、A【解析】试题分析:在中,设,∵,,即,∴,∵,∴,即.∵,,∴,,∴.根据直角三角形可得,,,∴,以所在的直线为轴,以所在的直线为轴建立直角坐标系可得,为线段上的一点,则存在实数使得.设,,则,且,∴,可得则,即,解得,故所求的最大值为:,故选A.考点:三角形的内角和定理,两角和的正弦公式,基本不等式求解最值.10、C【解析】
利用三角函数定义即可求得:,,再利用余弦的二倍角公式得解.【详解】因为角的终边过点,所以点到原点的距离所以,所以故选C【点睛】本题主要考查了三角函数定义及余弦的二倍角公式,考查计算能力,属于较易题.二、填空题:本大题共6小题,每小题5分,共30分。11、9【解析】
利用“乘1法”和基本不等式即可得出.【详解】解:∵正实数a,b满足2a+b=1,∴1a+12b=(2a+b∴1a+故答案为:9【点睛】本题考查了“乘1法”和基本不等式的应用,属于基础题.12、②③④【解析】
①利用反例证明命题错误;②先判断为其中一条对称轴;③通过恒等变换化成;④对两个解析式进行变形,得到定义域和对应关系均一样.【详解】对①,当,显然,但,所以,不符合增函数的定义,故①错;对②,当时,,所以为的一条对称轴,当取,取时,显然两个数关于直线对称,所以,即成立,故②对;对③,,,故③对;对④,因为,,两个函数的定义域都是,解析式均为,所以函数图象相同,故④对.综上所述,故填:②③④.【点睛】本题对三角函数的定义域、值域、单调性、对称性、周期性等知识进行综合考查,求解过程中要注意数形结合思想的应用.13、①②【解析】
对四个命题分别进行判断即可得到结论【详解】①若,垂足为,与确定平面,,则,,则,,则,故,故正确②若,是在内的射影,,根据三垂线定理,可得,故正确③底面是等边三角形,侧面都是有公共顶点的等腰三角形的三棱锥是正三棱锥,故不正确④若球的表面积扩大为原来的倍,则半径扩大为原来的倍,则球的体积扩大为原来的倍,故不正确其中正确的为①②【点睛】本题主要考查了空间中直线与平面之间的位置关系、球的体积等知识点,数量掌握各知识点然后对其进行判断,较为基础。14、5【解析】
根据等差中项的性质,以及的值,求出的值即是所求.【详解】根据等差中项的性质可知,的等差中项是,故.【点睛】本小题主要考查等差中项的性质,考查等差数列基本量的计算,属于基础题.15、-1【解析】
先将函数转化成同名三角函数,再结合二次函数性质进行求解即可【详解】令,,对称轴为;当时,时函数值最大,,解得;当时,对称轴为,函数在时取到最大值,与题设矛盾;当时,时函数值最大,,解得;故的数值为:-1故答案为:-1【点睛】本题考查换元法在三角函数中的应用,分类讨论求解函数最值,属于中档题16、(-∞,-1)∪(3,+∞)【解析】不等式可化为m(x-1)+x2-4x+3>0在0≤m≤4时恒成立.令f(m)=m(x-1)+x2-4x+3.则⇒⇒即x<-1或x>3.故答案为(-∞,-1)∪(3,+∞)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)5.【解析】
(1)根据正弦定理得,化简即得C的值;(2)先利用余弦定理求出a的值,再求的面积.【详解】(1)因为,根据正弦定理得,又,从而,由于,所以.(2)根据余弦定理,而,,,代入整理得,解得或(舍去).故的面积为.【点睛】本题主要考查正弦余弦定理解三角形,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(1)4(2)-12【解析】
(1)由,可得,即,再结合,且向量与的夹角为,利用数量积公式求解.(2)将利用向量的运算律展开,再利用数量积公式运算求解.【详解】(1)因为,所以,即.因为,且向量与的夹角为,所以,所以.(2).【点睛】本题主要考查向量的数量积运算,还考查了运算求解的能力,属于中档题.19、(1);(2)【解析】
(1)根据一元二次不等式的求解方法直接求解即可;(2)将问题转化为恒成立的问题,通过基本不等式求得的最小值,则.【详解】(1)或所求不等式解集为:(2)当时,可化为:又(当且仅当,即时取等号)即的取值范围为:【点睛】本题考查一元二次不等式的求解、恒成立问题的求解问题.解决恒成立问题的关键是通过分离变量的方式,将问题转化为所求参数与函数最值之间的比较问题.20、(1)(2)41【解析】
(1)根据通项公式先求出公差,再求即可;(2)先表示出,求出的具体值,根据求即可【详解】(1)由,,可得,则(2),,则,解得【点睛】本题考查等差数列通项公式和前项和公式的用法,属于基础题21、(1)证明见解析(2)θ最小值为60°【解析】
(1)在梯形ABCD中,利用勾股定理,得到AD⊥BD,再结合面面垂直的判定,证得DE⊥平面ABCD,即可证得AD⊥平面BFED;(2)以D为原点,直线DA,DB,DE分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,求得平面PAB与平面ADE法向量,利用向量的夹角公式,即可求解。【详解】(1)证明:在梯形ABCD中,∵AB∥CD,AD=DC=CB=1,∠BCD=120°,∴AB=2.∴BD2=AB2+AD2-2AB·AD·cos60°=3.∴AB2=AD2+BD2,∴AD⊥BD.∵平面BFED⊥平面ABCD,平面BFED∩平面ABCD=BD,DE⊂平面BFED,DE⊥DB,∴DE⊥平面ABCD,∴DE⊥AD,又DE∩BD=D,∴AD⊥平面BFED.(1)由(1)知,直线AD,BD,ED两两垂直,故以D为原点,直线DA,DB,DE分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,令EP=λ(0≤λ≤),则D(0,0,0),A(1,0,0),B(0,,0),P(0,λ,1),所以=(-1,,0),=(0,λ-,1).设n1=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 海南卫生健康职业学院《演讲与辩论》2023-2024学年第一学期期末试卷
- 2025年度私人车辆转让及绿色环保认证合同3篇
- 2025版金融风险评估与管理服务协议2篇
- 海南师范大学《欧洲现代主义建筑选读》2023-2024学年第一学期期末试卷
- 二零二五年度影视作品制作担保合同3篇
- 二零二五年度拆迁项目综合评估居间代理服务协议书模板2篇
- 2025年度版权购买合同属性为图书出版权2篇
- 二零二五年度智能办公家具销售与服务协议3篇
- 2025年出口贸易融资续约合同范本3篇
- 幼儿园财务管理制度细则模版(2篇)
- 工程临时用工确认单
- 简约清新大气餐饮行业企业介绍模板课件
- 氮气窒息事故案例经验分享
- 某公司年度生产经营计划书
- 厂房租赁合同标准版(通用10篇)
- 《教育心理学》教材
- 易制毒化学品安全管理制度(3篇)
- 建设单位业主方工程项目管理流程图
- 断裂力学——2Griffith理论(1)
- 风电场岗位任职资格考试题库大全-下(填空题2-2)
- 安全施工专项方案报审表
评论
0/150
提交评论