版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省诸暨市牌头中学2025届高一数学第二学期期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数(且)的图像是下列图像中的()A. B.C. D.2.如图,是水平放置的的直观图,则的面积是()A.6 B. C. D.123.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了了解该地区中小学生的近视形成原因,按学段用分层抽样的方法抽取该地区的学生进行调查,则样本容量和抽取的初中生中近视人数分别为()A., B., C., D.,4.将函数的图象向左平移个单位得到函数的图象,则的值为()A. B. C. D.5.下面结论中,正确结论的是()A.存在两个不等实数,使得等式成立B.(0<x<π)的最小值为4C.若是等比数列的前项的和,则成等比数列D.已知的三个内角所对的边分别为,若,则一定是锐角三角形6.已知无穷等比数列的公比为,前项和为,且,下列条件中,使得恒成立的是()A., B.,C., D.,7.在等比数列中,则()A.81 B. C. D.2438.在非直角中,“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要9.某几何体的三视图如图所示,则该几何体的表面积是()A.2 B. C. D.1210.已知的模为1,且在方向上的投影为,则与的夹角为()A.30° B.60° C.120° D.150°二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆锥的母线长为1,侧面展开图的圆心角为,则该圆锥的体积是______.12.函数的值域为_____________.13.函数,的递增区间为______.14.平面四边形如图所示,其中为锐角三角形,,,则_______.15.住在同一城市的甲、乙两位合伙人,约定在当天下午4.00-5:00间在某个咖啡馆相见商谈合作事宜,他们约好当其中一人先到后最多等对方10分钟,若等不到则可以离去,则这两人能相见的概率为__________.16.已知圆C:,点M的坐标为(2,4),过点N(4,0)作直线交圆C于A,B两点,则的最小值为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,且函数.若函数的图象上两个相邻的对称轴距离为.(Ⅰ)求函数的解析式;(Ⅱ)若方程在时,有两个不同实数根,,求实数的取值范围,并求出的值;(Ⅲ)若函数在的最大值为2,求实数的值.18.已知正项等比数列满足,,数列满足.(1)求数列,的通项公式;(2)令,求数列的前项和;(3)若,且对所有的正整数都有成立,求的取值范围.19.已知集合,其中,由中的元素构成两个相应的集合:,.其中是有序数对,集合和中的元素个数分别为和.若对于任意的,总有,则称集合具有性质.(Ⅰ)检验集合与是否具有性质并对其中具有性质的集合,写出相应的集合和.(Ⅱ)对任何具有性质的集合,证明.(Ⅲ)判断和的大小关系,并证明你的结论.20.在平面直角坐标系中,已知点与两个定点,的距离之比为.(1)求点的坐标所满足的关系式;(2)求面积的最大值;(3)若恒成立,求实数的取值范围.21.如图,在四棱锥中,丄平面,,,,,.(1)证明丄;(2)求二面角的正弦值;(3)设为棱上的点,满足异面直线与所成的角为,求的长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
将函数表示为分段函数的形式,由此确定函数图像.【详解】依题意,.由此判断出正确的选项为C.故选C.【点睛】本小题主要考查三角函数图像的识别,考查分段函数解析式的求法,考查同角三角函数的基本关系式,属于基础题.2、D【解析】由直观图画法规则,可得是一个直角三角形,直角边,,故选D.3、A【解析】
根据分层抽样的定义建立比例关系即可得到结论。【详解】由图1得样本容量为,抽取的初中生人数为人,则初中生近视人数为人,故选.【点睛】本题主要考查分层抽样的应用。4、A【解析】,向左平移个单位得到函数=,故5、A【解析】
对各个选项逐一判断,对于选项A,由,代入计算,即可判断是否正确;对于选项B,设,结合函数的单调性,即可判断是否正确;对于选项C,由公比为为偶数,即可判断是否正确;对于选项D,由余弦定理,即可判断是否正确.【详解】对于选项A,两个不等实数,使得等式成立,故A正确;对于选项B,若设设,可得在递减,即函数的最小值为,故B错误;对于选项C,是等比数列的前项的和,当公比,为偶数时,则,均为,不能够成等比数列,故C错误;对于选项D,中,若,可得,即为锐角,不能判断一定是锐角三角形,故D错误.故选:A.【点睛】本题考查两角和的正弦公式、基本不等式和等比数列的性质,以及余弦定理的应用,属于基础题.6、B【解析】
由已知推导出,由此利用排除法能求出结果.【详解】,,,,,若,则,故A与C不可能成立;若,则,故B成立,D不成立.故选:B【点睛】本题考查了等比数列的前项和公式以及排除法在选择题中的应用,属于中档题.7、A【解析】解:因为等比数列中,则,选A8、C【解析】
由得出,利用切化弦的思想得出其等价条件,再利用充分必要性判断出两条件之间的关系.【详解】若,则,易知,,,,,,,,,.因此,“”是“”的充要条件,故选C.【点睛】本题考查充分必要性的判断,同时也考查了切化弦思想、两角和差的正弦公式的应用,在讨论三角函数值符号时,要充分考虑角的取值范围,考查分析问题和解决问题的能力,属于中等题.9、C【解析】
由该几何体的三视图可知该几何体为底面是等腰直角三角形的直棱柱,再结合棱柱的表面积公式求解即可.【详解】解:由该几何体的三视图可知,该几何体为底面是等腰直角三角形的直棱柱,又由图可知底面等腰直角三角形的直角边长为1,棱柱的高为1,则该几何体的表面积是,故选:C.【点睛】本题考查了几何体的三视图,重点考查了棱柱的表面积公式,属基础题.10、A【解析】
根据投影公式,直接得到结果.【详解】,.故选A.【点睛】本题考查了投影公式,属于简单题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据题意得,解得,求得圆锥的高,利用体积公式,即可求解.【详解】设圆锥底面的半径为,根据题意得,解得,所以圆锥的高,所以圆锥的体积.【点睛】本题主要考查了圆锥的体积的计算,以及圆锥的侧面展开图的应用,其中解答中根据圆锥的侧面展开图,求得圆锥的底面圆的半径是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】
分析函数在区间上的单调性,由此可求出该函数在区间上的值域.【详解】由于函数和函数在区间上均为增函数,所以,函数在区间上也为增函数,且,,当时,,因此,函数的值域为.故答案为:.【点睛】本题考查函数值域的求解,解题的关键就是判断出函数的单调性,考查分析问题和解决问题的能力,属于中等题.13、[0,](开区间也行)【解析】
根据正弦函数的单调递增区间,以及题中条件,即可求出结果.【详解】由得:,又,所以函数,的递增区间为.故答案为【点睛】本题主要考查正弦型函数的单调区间,熟记正弦函数的单调区间即可,属于常考题型.14、.【解析】
由二倍角公式求出,然后用余弦定理求得,再由余弦定理求.【详解】由题意,在中,,在中,,即,解得,或.若,则,,不合题意,舍去,所以.故答案为:.【点睛】本题考查余弦的二倍角公式,考查余弦定理.掌握余弦定理是解题关键.15、【解析】
将甲、乙到达时间设为(以为0时刻,单位为分钟).则相见需要满足:画出图像,根据几何概型公式得到答案.【详解】根据题意:将甲、乙到达时间设为(以为0时刻,单位为分钟)则相见需要满足:画出图像:根据几何概型公式:【点睛】本题考查了几何概型的应用,意在考查学生解决问题的能力.16、8【解析】
先将所求化为M到AB中点的距离的最小值问题,再求得AB中点的轨迹为圆,利用点M到圆心的距离减去半径求得结果.【详解】设A、B中点为Q,连接QC,则QC,所以Q的轨迹是以NC为直径的圆,圆心为P(5,0),半径为1,又,即求点M到P的距离减去半径,又,所以,故答案为8【点睛】本题考查了向量的加法运算,考查了求圆中弦中点轨迹的几何方法,考查了点点距公式,考查了分析解决问题的能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ),;(Ⅲ)或【解析】
(Ⅰ)根据三角恒等变换公式化简,根据周期计算,从而得出的解析式;(Ⅱ)求出在,上的单调性,计算最值和区间端点函数值,从而得出的范围,根据对称性得出的值;(Ⅲ)令,求出的范围和关于的二次函数,讨论二次函数单调性,根据最大值列方程求出的值.【详解】(Ⅰ)∵,,∴若函数的图象上两个相邻的对称轴距离为,则函数的周期,∴,即,∴(Ⅱ)由(Ⅰ)知,,当时,∴若方程在有两个不同实数根,则.∴令,,则,,∴函数在内的对称轴为,∵,是方程,的两个不同根,∴(Ⅲ)因为,所以,令,则.∴又∵,由得,∴.(1)当,即时,可知在上为减函数,则当时,由,解得:,不合题意,舍去.(2)当,即时,结合图象可知,当时,,由,解得,满足题意.(3)当,即时,知在上为增函数,则时,,由得,舍去综上,或为所求.【点睛】本题考查了平面向量的数量积的运算,三角函数的恒等变换,三角函数最值的计算,考查换元法解题思想,属于中档题.18、(1),;(2);(3).【解析】
(1)设等比数列的公比为,则,根据条件可求出的值,利用等比数列的通项公式可求出,再由对数的运算可求出数列的通项公式;(2)求出数列的通项公式,然后利用错位相减法求出数列的前项和为;(3)利用数列单调性的定义求出数列最大项的值为,由题意得出关于的不等式对任意的恒成立,然后利用参变量分离法得出,并利用基本不等式求出在时的最小值,即可得出实数的取值范围.【详解】(1)设等比数列的公比为,则,由可得,,,即,,解得,.;(2)由(1)可得,,可得,上式下式,得,因此,;(3),,,,即,则有.所以,数列是单调递减数列,则数列的最大项为.由题意可知,关于的不等式对任意的恒成立,.由基本不等式可得,当且仅当时,等号成立,则在时的最小值为,,因此,实数的取值范围是.【点睛】本题考查等比数列通项公式的求解,考查错位相减求和法以及数列不等式恒成立问题,涉及数列最大项的问题,一般利用数列单调性的定义来求解,考查分析问题和解决问题的能力,属于中等题.19、(Ⅰ)集合不具有性质,集合具有性质,相应集合,,集合,(Ⅱ)见解析(Ⅲ)【解析】解:集合不具有性质.集合具有性质,其相应的集合和是,.(II)证明:首先,由中元素构成的有序数对共有个.因为,所以;又因为当时,时,,所以当时,.从而,集合中元素的个数最多为,即.(III)解:,证明如下:(1)对于,根据定义,,,且,从而.如果与是的不同元素,那么与中至少有一个不成立,从而与中也至少有一个不成立.故与也是的不同元素.可见,中元素的个数不多于中元素的个数,即,(2)对于,根据定义,,,且,从而.如果与是的不同元素,那么与中至少有一个不成立,从而与中也不至少有一个不成立,故与也是的不同元素.可见,中元素的个数不多于中元素的个数,即,由(1)(2)可知,.20、(1)(2)3;(3)【解析】
(1)根据题意,结合两点间距离公式,可以得到等式,化简后得到点的坐标所满足的关系式;(2)设是曲线上任一点,求出的表达式,结合的取值范围,可以求出面积的最大值;(3)恒成立,则恒成立.设,当它与圆相切时,取得最大和最小值,利用点到直线距离公式,可以求出取得最大和最小值,最后可以求出实数的取值范围.【详解】(1)设的坐标是,由,得,化简得.(2)由(1)得,点在以为圆心,为半径的圆上.设是曲线上任一点,则,又,故的最大值为:.(3)由(1)得:圆的方程是若恒成立,则恒成立.设,当它与圆相切时,取得最大和最小值,由得:,,故当时,原不等式恒成立.【点睛】本题考查了求点的轨迹方程,考查了直线与圆的位置关系,考查了求三角形面积最大值问题,考查了数学运算能力.21、(1)见证明;(2);(3)【解析】
(1)要证异面直线垂直,即证线面垂直,本题需证平面(2)作于点,连接.为二面角的平面角,在中解出即可.(3)过点作的平行线与线段
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单位管理制度呈现大全【人事管理】
- 三角形的面积推导课件
- 第4单元 民族团结与祖国统一 测试卷-2021-2022学年部编版八年级历史下册
- DBJT 13-317-2019 装配式轻型钢结构住宅
- 《电镀锡工艺学》课件
- 2024年大学生摄影大赛活动总结
- 《焊接基本知识》课件
- 中小学家长会122
- 美术:源起与影响
- 医疗行业专业技能培训体会
- 医院后勤管理作业指导书
- 六年级下册心理健康教育教案-8 男女生交往小闹钟辽大版
- 【课件】第五单元化学反应的定量关系新版教材单元分析九年级化学人教版(2024)上册
- 国库资金支付管理办法
- 中医调理理疗免责协议书模板
- 小学二年级语文(人教版)下册生字笔顺
- 2024 锦纶深度报告:消费升级带动需求增长原材料国产化促进产能释放
- 外研版高一英语上学期必修1-2期末考试试卷
- 连铸工职业技能大赛考试题库500题(含各题型)
- 2024年执法资格考试题库(附答案)
- 激光切割机市场需求与消费特点分析
评论
0/150
提交评论