山东省新泰第一中学北校2025届高一数学第二学期期末学业质量监测模拟试题含解析_第1页
山东省新泰第一中学北校2025届高一数学第二学期期末学业质量监测模拟试题含解析_第2页
山东省新泰第一中学北校2025届高一数学第二学期期末学业质量监测模拟试题含解析_第3页
山东省新泰第一中学北校2025届高一数学第二学期期末学业质量监测模拟试题含解析_第4页
山东省新泰第一中学北校2025届高一数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省新泰第一中学北校2025届高一数学第二学期期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知的三个内角所对的边分别为.若,则该三角形的形状是()A.等边三角形 B.等腰三角形 C.等腰三角形或直角三角形 D.直角三角形2.已知某数列的前项和(为非零实数),则此数列为()A.等比数列 B.从第二项起成等比数列C.当时为等比数列 D.从第二项起的等比数列或等差数列3.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.4.在正方体中,E,F,G,H分别是,,,的中点,K是底面ABCD上的动点,且平面EFG,则HK与平面ABCD所成角的正弦值的最小值是()A. B. C. D.5.不等式的解集是()A. B.C. D.6.设等比数列的公比,前项和为,则()A. B. C. D.7.若圆心坐标为的圆,被直线截得的弦长为,则这个圆的方程是()A. B.C. D.8.圆与直线的位置关系是()A.相交 B.相切 C.相离 D.直线过圆心9.已知平面向量满足:,,,若,则的值为()A. B. C.1 D.-110.设,是两条不同的直线,,是两个不同的平面,是下列命题正确的是()A.若,,则 B.若,,,则C.若,,,则 D.若,,,则二、填空题:本大题共6小题,每小题5分,共30分。11.在中,角A,B,C所对的边分别为a,b,c,,的平分线交AC于点D,且,则的最小值为________.12.设函数满足,当时,,则=________.13.设,则函数是__________函数(奇偶性).14.若,则_________.15.已知为直线,为平面,下列四个命题:①若,则;②若,则;③若,则;④若,则.其中正确命题的序号是______.16.在△ABC中,点M,N满足,若,则x=________,y=________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列满足:,.(1)求数列的通项公式;(2)求数列的前n项和为.18.设数列的前项和为,已知(Ⅰ)求,并求数列的通项公式;(Ⅱ)求数列的前项和.19.已知是递增数列,其前项和为,,且,.(Ⅰ)求数列的通项;(Ⅱ)是否存在使得成立?若存在,写出一组符合条件的的值;若不存在,请说明理由;(Ⅲ)设,若对于任意的,不等式恒成立,求正整数的最大值.20.已知的顶点,AB边上的中线CM所在直线方程为,AC边上的高BH所在直线方程为.(1)求C点坐标;(2)求直线BC的方程.21.如图,求阴影部分绕旋转一周所形成的几何体的表面积和体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

利用三角形的内角关系及三角变换公式得到,从而得到,此三角形的形状可判断.【详解】因为,故,整理得到,所以,因,所以即,故为等腰三角形,故选B.【点睛】本题考查两角和、差的正弦,属于基础题,注意角的范围的讨论.2、D【解析】

设数列的前项和为,运用数列的递推式:当时,,当时,,结合等差数列和等比数列的定义和通项公式,即可得到所求结论.【详解】设数列的前项和为,对任意的,(为非零实数).当时,;当时,.若,则,此时,该数列是从第二项起的等差数列;若且,不满足,当时,,此时,该数列是从第二项起的等比数列.综上所述,此数列为从第二项起的等比数列或等差数列.故选:D.【点睛】本题考查数列的递推式的运用,等差数列和等比数列的定义和通项公式,考查分类讨论思想和运算能力,属于中档题.3、D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.4、A【解析】

根据题意取的中点,可得平面平面,从而可得K在上移动,平面,即可HK与平面ABCD所成角中最小的为【详解】如图,取的中点,连接,由E,F,G,H分别是,,,的中点,所以,,且,则平面平面,若K是底面ABCD上的动点,且平面EFG,则K在上移动,由正方体的性质可知平面,所以HK与平面ABCD所成角中最小的为,不妨设正方体的边长为,在中,.故选:A【点睛】本题考查了求线面角,同时考查了面面平行的判定定理,解题的关键是找出线面角,属于基础题.5、D【解析】

把不等式,化简为不等式,即可求解,得到答案.【详解】由题意,不等式,可化为,即,解得或,所以不等式的解集为.故选:D.【点睛】本题主要考查了分式不等式的求解,其中解答中熟记分式不等式的解法,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.6、C【解析】

利用等比数列的前n项和公式表示出,利用等比数列的通项公式表示出,计算即可得出答案。【详解】因为,所以故选C【点睛】本题考查等比数列的通项公式与前n项和公式,属于基础题。7、B【解析】

设出圆的方程,求出圆心到直线的距离,利用圆心到直线的距离、半径和半弦长满足勾股定理,求得圆的半径,即可求得圆的方程,得到答案.【详解】由题意,设圆的方程为,则圆心到直线的距离为,又由被直线截得的弦长为,则,所以所求圆的方程为,故选B.【点睛】本题主要考查了圆的方程的求解,以及直线与圆的弦长的应用,其中解答中熟记直线与圆的位置关系,合理利用圆心到直线的距离、半径和半弦长满足勾股定理是解答的关键,着重考查了推理与运算能力,属于基础题.8、B【解析】

求出圆心到直线的距离与半径比较.【详解】圆的圆心是,半径为1,圆心到直线即的距离为,直线与圆相切.故选:B.【点睛】本题考查直线与圆人位置关系,判断方法是:利用圆心到直线的距离与半径的关系判断.9、C【解析】

将代入,化简得到答案.【详解】故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.10、D【解析】

根据空间中线线,线面,面面位置关系,逐项判断即可得出结果.【详解】A选项,若,,则可能平行、相交、或异面;故A错;B选项,若,,,则可能平行或异面;故B错;C选项,若,,,如果再满足,才会有则与垂直,所以与不一定垂直;故C错;D选项,若,,则,又,由面面垂直的判定定理,可得,故D正确.故选D【点睛】本题主要考查空间的线面,面面位置关系,熟记位置关系,以及判定定理即可,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、32【解析】

根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可.【详解】如图所示,则△ABC的面积为,即ac=2a+2c,得,得,当且仅当,即3c=a时取等号;∴的最小值为32.故答案为:32.【点睛】本题考查三角形中的几何计算,属于中等题.12、【解析】

由已知得f()=f()+sin=f()+sin+sin=f()+sin+sin+sin,由此能求出结果.【详解】∵函数f(x)(x∈R)满足f(x+π)=f(x)+sinx,当0≤x<π时,f(x)=0,∴f()=f()+sin=f()+sin+sin=f()+sin+sin+sin=0+=.故答案为:.【点睛】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.13、偶【解析】

利用诱导公式将函数的解析式进行化简,即可判断出函数的奇偶性.【详解】,因此,函数为偶函数.故答案为:偶.【点睛】本题考查三角函数奇偶性的判断,解题的关键就是利用诱导公式对三角函数解析式进行化简,考查分析问题和解决问题的能力,属于基础题.14、【解析】

利用诱导公式求解即可【详解】,故答案为:【点睛】本题考查诱导公式,是基础题15、③④【解析】

①和②均可以找到不符合题意的位置关系,则①和②错误;根据线面垂直性质定理和空间中的平行垂直关系可知③和④正确.【详解】若,此时或,①错误;若,此时或异面,②错误;由线面垂直的性质定理可知,若,则,③正确;两条平行线中的一条垂直于一个平面,则另一条直线必垂直于该平面,可知④正确本题正确结果:③④【点睛】本题考查空间中的平行与垂直关系相关命题的判断,考查学生对于平行与垂直的判定和性质的掌握情况.16、【解析】特殊化,不妨设,利用坐标法,以A为原点,AB为轴,为轴,建立直角坐标系,,,则,.考点:本题考点为平面向量有关知识与计算,利用向量相等解题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)由等差数列的性质,求得,进而得到,即可求得数列的通项公式;(2)由(1)可得,列用裂项法,即可求解数列的前项和.【详解】(1)由等差数列的性质,可得,所以,又由,所以数列的通项公式.(2)由(1)可得,所以.【点睛】本题主要考查等差数列的通项公式及求和公式、以及“裂项法”求和的应用,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,能较好的考查考生的逻辑思维能力及基本计算能力,属于基础题.18、(1),;(2).【解析】试题分析:本题主要考查由求、等比数列的通项公式、等比数列的前n项和公式、错位相减法等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,由求,利用,分两部分求和,经判断得数列为等比数列;第二问,结合第一问的结论,利用错位相减法,结合等比数列的前n项和公式,计算化简.试题解析:(Ⅰ)时所以时,是首项为、公比为的等比数列,,.(Ⅱ)错位相减得:.考点:求、等比数列的通项公式、等比数列的前n项和公式、错位相减法.19、(1)(2)不存在(3)1【解析】

(Ⅰ),得,解得,或.由于,所以.因为,所以.故,整理,得,即.因为是递增数列,且,故,因此.则数列是以2为首项,为公差的等差数列.所以.………………5分(Ⅱ)满足条件的正整数不存在,证明如下:假设存在,使得,则.整理,得,①显然,左边为整数,所以①式不成立.故满足条件的正整数不存在.……1分(Ⅲ),不等式可转化为.设,则.所以,即当增大时,也增大.要使不等式对于任意的恒成立,只需即可.因为,所以.即.所以,正整数的最大值为1.………14分20、(1);(2)【解析】

(1)根据点斜式求出AC边所在的直线方程,再由CM所在直线方程,两方程联立即可求解.(2)设,根据题意可得,,两式联立解得的值,再根据两点式即可得到直线BC的方程.【详解】(1)AC边上的高BH所在直线方程为,且,AC边所在的直线方程为,由AB边上的中线CM所在直线方程为,,解得,故C点坐标为.(2)设,则由AC边上的高BH所在直线方程为,可得,AB边上的中线CM所在直线方程为,,,解得,故点的坐标为,则直线BC的方程为,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论