江苏省东海县2025届数学高一下期末监测模拟试题含解析_第1页
江苏省东海县2025届数学高一下期末监测模拟试题含解析_第2页
江苏省东海县2025届数学高一下期末监测模拟试题含解析_第3页
江苏省东海县2025届数学高一下期末监测模拟试题含解析_第4页
江苏省东海县2025届数学高一下期末监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省东海县2025届数学高一下期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数,若函数恰有两个零点,则实数的取值范围为()A. B. C. D.2.已知函数f(x)是定义在上的奇函数,当x>0时,f(x)=2x-3,则A.14B.-114C.3.若,则A. B. C. D.4.若是一个圆的方程,则实数的取值范围是()A. B.C. D.5.阅读程序框图,运行相应的程序,输出的结果为()A. B. C. D.6.设,则()A. B.C. D.7.已知平面向量,,若与同向,则实数的值是()A. B. C. D.8.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,二面角的大小为()A.30° B.45° C.60° D.90°9.数列满足,,则()A. B. C. D.210.中,,则()A. B. C.或 D.二、填空题:本大题共6小题,每小题5分,共30分。11.直棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成的角的余弦值为.12.已知的圆心角所对的弧长等于,则该圆的半径为______.13.设函数(是常数,).若在区间上具有单调性,且,则的最小正周期为_________.14.已知数列{an}的前n项和Sn=2n-3,则数列{an}的通项公式为________.15.设是等差数列的前项和,若,则___________.16.在中,内角A,B,C所对的边分别为a,b,c,若,,b=1,则_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的部分图象如图所示.(1)求的解析式;(2)求的单调增区间并求出取得最小值时所对应的x取值集合.18.设数列的前项和为,对于,,其中是常数.(1)试讨论:数列在什么条件下为等比数列,请说明理由;(2)设,且对任意的,有意义,数列的前项和为.若,求的最大值.19.已知向量,.(Ⅰ)求;(Ⅱ)若向量与垂直,求的值.20.甲乙两地生产某种产品,他们可以调出的数量分别为300吨、750吨.A,B,C三地需要该产品数量分别为200吨,450吨,400吨,甲地运往A,B,C三地的费用分别为6元/吨、3元/吨,5元/吨,乙地运往A,B,C三地的费用分别为5元/吨,9元/吨,6元/吨,问怎样调运,才能使总运费最小?21.如图已知平面,,,,,,点,分别为,的中点.(1)求证://平面;(2)求直线与平面所成角的大小.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

首先注意到,是函数的一个零点.当时,将分离常数得到,构造函数,画出的图像,根据“函数与函数有一个交点”结合图像,求得的取值范围.【详解】解:由恰有两个零点,而当时,,即是函数的一个零点,故当时,必有一个零点,即函数与函数必有一个交点,利用单调性,作出函数图像如下所示,由图可知,要使函数与函数有一个交点,只需即可.故实数的取值范围是.故选:A.【点睛】本小题主要考查已知函数零点个数,求参数的取值范围,考查数形结合的数学思想方法,属于中档题.2、D【解析】试题分析:函数f(x)是定义在上的奇函数,,故答案为D.考点:奇函数的应用.3、B【解析】

分析:由公式可得结果.详解:故选B.点睛:本题主要考查二倍角公式,属于基础题.4、C【解析】

根据即可求出结果.【详解】据题意,得,所以.【点睛】本题考查圆的一般方程,属于基础题型.5、D【解析】

按照程序框图运行程序,直到时输出结果即可.【详解】按照程序框图运行程序输入,,则,满足,,则,满足,,则,满足,,则,满足,,则,满足,,则,不满足,输出故选:【点睛】本题考查根据程序框图计算输出结果的问题,属于基础题.6、C【解析】

函数,函数且,求出【详解】因为且且所以故选:C【点睛】本题考查的是与反三角函数有关的定义域问题,较简单.7、D【解析】

通过同向向量的性质即可得到答案.【详解】与同向,,解得或(舍去),故选D.【点睛】本题主要考查平行向量的坐标运算,但注意同向,难度较小.8、D【解析】

当平面ACD垂直于平面BCD时体积最大,得到答案.【详解】取中点,连接当平面ACD垂直于平面BCD时等号成立.此时二面角为90°故答案选D【点睛】本题考查了三棱锥体积的最大值,确定高的值是解题的关键.9、C【解析】

根据已知分析数列的周期性,可得答案.【详解】解:∵数列满足,,∴,,,,故数列以4为周期呈现周期性变化,由,故,故选:C.【点睛】本题考查的知识点是数列的递推公式,数列的周期性,难度中档.10、A【解析】

根据正弦定理,可得,然后根据大边对大角,可得结果..【详解】由,所以由,所以故,所以故选:A【点睛】本题考查正弦定理的应用,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:画出图形,找出BM与AN所成角的平面角,利用解三角形求出BM与AN所成角的余弦值.解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,如图:BC的中点为O,连结ON,MN,OB,∴MNOB,∴MN0B是平行四边形,∴BM与AN所成角就是∠ANO,∵BC=CA=CC1,设BC=CA=CC1=2,∴CO=1,AO=,AN=,MB==,在△ANO中,由余弦定理得:cos∠ANO===.故答案为.考点:异面直线及其所成的角.12、【解析】

先将角度化为弧度,再根据弧长公式求解.【详解】解:圆心角,弧长为,,即该圆的半径长.故答案为:.【点睛】本题考查了角度和弧度的互化以及弧长公式的应用问题,属于基础题.13、【解析】

由在区间上具有单调性,且知,函数的对称中心为,由知函数的对称轴为直线,设函数的最小正周期为,所以,,即,所以,解得,故答案为.考点:函数的对称性、周期性,属于中档题.14、【解析】

利用来求的通项.【详解】,化简得到,填.【点睛】一般地,如果知道的前项和,那么我们可利用求其通项,注意验证时,(与有关的解析式)的值是否为,如果是,则,如果不是,则用分段函数表示.15、1.【解析】

由已知结合等差数列的性质求得,代入等差数列的前项和得答案.【详解】解:在等差数列中,由,得,,则,故答案为:1.【点睛】本题主要考查等差数列的通项公式,考查等差数列的性质,考查了等差数列前项和的求法,属于基础题.16、2【解析】

根据条件,利用余弦定理可建立关于c的方程,即可解出c.【详解】由余弦定理得,即,解得或(舍去).故填2.【点睛】本题主要考查了利用余弦定理求三角形的边,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)单调增区间为,();x取值集合,()【解析】

(1)先由函数的最大值求出的值,再由图中对称轴与相邻对称中心之间的距离得出最小正周期,于此得出,再将点代入函数的解析式结合的范围得出的值,于此可得出函数的解析式;(2)解不等式可得出函数的单调递增区间,由可求出函数取最小值时的取值集合.【详解】(1)由图象可知,.因为,所以.所以.解得.又因为函数的图象经过点,所以,解得.又因为,所以,所以.(2),,解得,,的单调增区间为,(),的最小值为-2,取得最小值时x取值集合,().【点睛】本题考查由三角函数图象求解析式,以及三角函数的基本性质问题,在利用图象求三角函数的解析式时,其基本步骤如下:(1)求、:,;(2)求:;(3)求:将顶点或对称中心点代入函数解析式求,但是在代对称中心点时需要结合函数在所找对称中心点附近的单调性来考查.18、(1)当,且时,数列一定为等比数列.理由见解析;(2)【解析】

(1)利用等比数列的定义证明数列为等比数列.(2)利用(1)的结论,进一步求出数列的和及最大值.【详解】解:(1)对于,,,①.②①减②得,即,,.当,且时,数列一定为等比数列.(2)由(1)得,,由,得,即(或)由可解得.所以,.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,叠加法在求数列的通项公式中的应用,主要考查学生的运算能力和转化能力,属于基础题型.19、(Ⅰ)-1;(Ⅱ)【解析】

(Ⅰ)利用向量的数量积的坐标表示进行计算;(Ⅱ)由垂直关系,得到坐标间的等式关系,然后计算出参数的值.【详解】解:(Ⅰ)因向量,∴,∴(Ⅱ),∵向量与垂直,∴∴,∴【点睛】已知,若,则有;已知,若,则有.20、甲到B调运300吨,从乙到A调运200吨,从乙到B调运150吨,从乙到C调运400吨,总运费最小【解析】

设从甲到A调运吨,从甲到B调运吨,则由题设可得,总的费用为,利用线性规划可求目标函数的最小值.【详解】设从甲到A调运吨,从甲到B调运吨,从甲到C调运吨,则从乙到A调运吨,从乙到B调运吨,从乙到C调运吨,设调运的总费用为元,则.由已知得约束条件为,可行域如图所示,平移直线可得最优解为.甲到B调运300吨,从乙到A调运200吨,从乙到B调运150吨,从乙到C调运400吨,总运费最小.【点睛】本题考查线性规划在实际问题中的应用,属于基础题.21、(1)见证明;(2)【解析】

(1)要证线面平行即证线线平行,本题连接A1B,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论