2025届江苏镇江市高一数学第二学期期末复习检测试题含解析_第1页
2025届江苏镇江市高一数学第二学期期末复习检测试题含解析_第2页
2025届江苏镇江市高一数学第二学期期末复习检测试题含解析_第3页
2025届江苏镇江市高一数学第二学期期末复习检测试题含解析_第4页
2025届江苏镇江市高一数学第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏镇江市高一数学第二学期期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.与直线垂直于点的直线的一般方程是()A. B. C. D.2.若,,,设,,且,则的值为()A.0 B.3 C.15 D.183.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.4.若将函数的图象向右平移个单位后,所得图象对应的函数为()A. B. C. D.5.函数(其中,,)的图象如图所示,为了得到的图象,只需把的图象上所有的点()A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度6.棉花的纤维长度是棉花质量的重要指标.在一批棉花中抽测了根棉花的纤维长度(单位:),将样本数据作成如下的频率分布直方图:下列关于这批棉花质量状况的分析,不合理的是()A.这批棉花的纤维长度不是特别均匀B.有一部分棉花的纤维长度比较短C.有超过一半的棉花纤维长度能达到以上D.这批棉花有可能混进了一些次品7.函数的定义域为()A. B. C. D.8.已知函数在区间上恒成立,则实数的最小值是()A. B. C. D.9.已知,,当时,不等式恒成立,则的取值范围是A. B. C. D.10.若集合A=x∈Nx-1≤1A.3 B.4 C.7 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.设,则的值是____.12.已知等比数列的首项为,公比为,其前项和为,下列命题中正确的是______.(写出全部正确命题的序号)(1)等比数列单调递增的充要条件是,且;(2)数列:,,,……,也是等比数列;(3);(4)点在函数(,为常数,且,)的图像上.13.分形几何学是美籍法国数学家伯努瓦.B.曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路,下图是按照一定的分形规律生长成一个数形图,则第13行的实心圆点的个数是________14.在锐角中,则的值等于.15.已知函数,若函数恰有个零点,则实数的取值范围为__________.16.若为的最小内角,则函数的值域为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知:(,为常数).(1)若,求的最小正周期;(2)若在,上最大值与最小值之和为3,求的值.18.精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对某乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品进行二次加工后进行推广促销,预计该批产品销售量万件(生产量与销售量相等)与推广促销费万元之间的函数关系为(其中推广促销费不能超过5千元).已知加工此农产品还要投入成本万元(不包括推广促销费用),若加工后的每件成品的销售价格定为元/件.(1)试将该批产品的利润万元表示为推广促销费万元的函数;(利润=销售额-成本-推广促销费)(2)当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?19.在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.求证:(1)AC⊥BC1;(2)AC1∥平面CDB1.20.解方程:.21.已知,其中,求:(1);;(2)与的夹角的余弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由已知可得这就是所求直线方程,故选A.2、B【解析】

首先分别求出向量,然后再用两向量平行的坐标表示,最后求值.【详解】,,当时,,解得.故选B.【点睛】本题考查了向量平行的坐标表示,属于基础题型.3、C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中基本事件数的探求方法:(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.4、B【解析】

根据正弦型函数的图象平移规律计算即可.【详解】.故选:B.【点睛】本题考查三角函数图象的平移变化,考查对基本知识的理解和掌握,属于基础题.5、C【解析】

通过图象可以知道:最低点的纵坐标为,函数的图象与横轴的交点的坐标为,与之相邻的最低点的坐标为,这样可以求出和最小正周期,利用余弦型函数最小正周期公式,可以求出,把零点代入解析式中,可以求出,这样可以求出函数的解析式,利用诱导公式化为正弦型三角函数解析式形式,最后利用平移变换解析式的变化得出正确答案.【详解】由图象可知:函数的最低点的纵坐标为,函数的图象与横轴的交点的坐标为,与之相邻的最低点的坐标为,所以,设函数的最小正周期为,则有,而,把代入函数解析式中,得,所以,而,显然由向右平移个单位长度得到的图象,故本题选C.【点睛】本题考查了由函数图象求余弦型函数解析式,考查了正弦型函数图象之间的平移变换规律.6、C【解析】

根据频率分布直方图计算纤维长度超过的频率,可知不超过一半,从而得到结果.【详解】由频率分布直方图可知,纤维长度超过的频率为:棉花纤维长度达到以上的不超过一半不合理本题正确选项:【点睛】本题考查利用频率分布直方图估计总体数据的分布特征,关键是能够熟练掌握利用频率分布直方图计算频率的方法.7、C【解析】要使函数有意义,需使,即,所以故选C8、D【解析】

直接利用三角函数关系式的恒等变换,把函数的关系式变形为正弦型函数,进一步利用恒成立问题的应用求出结果.【详解】函数,由因为,所以,即,当时,函数的最大值为,由于在区间上恒成立,故,实数的最小值是.故选:D【点睛】本题考查了两角和的余弦公式、辅助角公式以及三角函数的最值,需熟记公式与三角函数的性质,同时考查了不等式恒成立问题,属于基出题9、B【解析】

根据为定值,那么乘以后值不变,由基本不等式可消去x,y后,对得到的不等式因式分解,即可解得m的值.【详解】因为,,,所以.因为不等式恒成立,所以,整理得,解得,即.【点睛】本题考查基本不等式,由为定值和已知不等式相乘来构造基本不等式,最后含有根式的因式分解也是解题关键.10、A【解析】

先求出A∩B的交集,再依据求真子集个数公式求出,也可列举求出。【详解】A=x∈Nx-1≤1A∩B=0,1,所以A∩B的真子集的个数为2【点睛】有限集合a1,a2,⋯二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据二倍角公式得出,再根据诱导公式即可得解.【详解】解:由题意知:故,即.故答案为.【点睛】本题考查了二倍角公式和诱导公式的应用,属于基础题.12、(3)【解析】

根据递增数列的概念,以及等比数列的通项公式,充分条件与必要条件的概念,可判断(1);令,为偶数,可判断(2);根据等比数列的性质,直接计算,可判断(3);令,结合题意,可判断(4),进而可得出结果.【详解】(1)若等比数列单调递增,则,所以或,故且不是等比数列单调递增的充要条件;(1)错;(2)若,为偶数,则,,因等比数列中的项不为,故此时数列,,,……,不成等比数列;(2)错;(3),所以(3)正确;(4)若,则,若点在函数的图像上,则,因,,故不能对任意恒成立;故(4)错.故答案为:(3)【点睛】本题主要考命题真假的判定,熟记等比数列的性质,以及等比数列的通项公式与求和公式即可,属于常考题型.13、【解析】

观察图像可知每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.再利用规律找到行与行之间的递推关系即可.【详解】由图像可得每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.故从第三行开始,每行的实心圆点数均为前两行之和.即.故第1到第13行中实心圆点的个数分别为:.故答案为:【点睛】本题主要考查了递推数列的实际运用,需要观察求得行与行之间的实心圆点的递推关系,属于中等题型.14、2【解析】设由正弦定理得15、【解析】

首先根据题意转化为函数与有个交点,再画出与的图象,根据图象即可得到的取值范围.【详解】有题知:函数恰有个零点,等价于函数与有个交点.当函数与相切时,即:,,,解得或(舍去).所以根据图象可知:.故答案为:【点睛】本题主要考查函数的零点问题,同时考查了学生的转化能力,体现了数形结合的思想,属于中档题.16、【解析】

依题意,,利用辅助角公式得,利用正弦函数的单调性即可求得的取值范围,在利用换元法以及同角三角函数基本关系式把所求问题转化结合基本不等式即可求解.【详解】∵为的最小内角,故,又,因为,故,∴取值范围是.令,则且∴,令,由双勾函数可知在上为增函数,故,故.故答案为:.【点睛】本题考查同角的三角函数的基本关系、辅助角公式以及正弦型函数的值域,注意根据代数式的结构特点换元后将三角函数的问题转化为双勾函数的问题,本题属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)1【解析】

(1)利用二倍角和辅助角公式化简,即可求出最小正周期;(2)根据在,上,求解内层函数范围,即可求解最值,由最大值与最小值之和为3,求的值.【详解】解:,(1)的最小正周期;(2),,当时,即,取得最小值为,当时,即,取得最大值为,最大值与最小值之和为3,,,故的值为1.【点睛】本题主要考查三角函数的性质和图象的应用,属于基础题.18、(1);(2)当推广促销费投入3万元时,利润最大,最大利润为27万元.【解析】试题分析:⑴根据题意即可求得,化简即可;⑵利用基本不等式可以求出该函数的最值,注意等号成立的条件,即可得到答案;解析:(1)由题意知∴.(2)∵∴.当且仅当时,上式取“”∴当时,.答:当推广促销费投入3万元时,利润最大,最大利润为27万元.19、(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)由勾股定理可证得为直角三角形即可证得,由直棱柱可知面,可证得,根据线面垂直的判定定理可证得面,从而可得.(2)设与的交点为,连结,由中位线可证得,根据线面平行的判定定理可证得平面.试题解析:证明:(1)证明:,,为直角三角形且,即.又∵三棱柱为直棱柱,面,面,,,面,面,.(2)设与的交点为,连结,是的中点,是的中点,.面,面,平面.考点:1线线垂直,线面垂直;2线面平行.20、或或【解析】

由倍角公式可将题目中的方程变形解出来【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论