版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省安大附中高一下数学期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若实数x,y满足条件,则目标函数z=2x-y的最小值()A. B.-1 C.0 D.22.已知集合,对于满足集合A的所有实数t,使不等式恒成立的x的取值范围为A. B.C. D.3.圆心坐标为,半径长为2的圆的标准方程是()A. B.C. D.4.如图是某体育比赛现场上评委为某位选手打出的分数的茎叶图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别是()A.5和1.6 B.85和1.6 C.85和0.4 D.5和0.45.同时具有性质:“①最小正周期是;②图象关于直线对称;③在上是单调递增函数”的一个函数可以是()A. B.C. D.6.如图是一圆锥的三视图,正视图和侧视图都是顶角为120°的等腰三角形,若过该圆锥顶点S的截面三角形面积的最大值为2,则该圆锥的侧面积为A. B. C. D.47.已知函数,其函数图像的一个对称中心是,则该函数的单调递增区间可以是()A. B. C. D.8.光线自点M(2,3)射到N(1,0)后被x轴反射,则反射光线所在的直线方程为()A. B.C. D.9.已知,则满足的关系式是A.,且 B.,且C.,且 D.,且10.等比数列的前项和、前项和、前项和分别为,则().A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则____.12.在等比数列中,,,则________.13.若向量,,且,则实数______.14.在正方体中,是的中点,连接、,则异面直线、所成角的正弦值为_______.15.如图,在圆心角为,半径为2的扇形AOB中任取一点P,则的概率为________.16.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高,,三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在内的学生中抽取的人数应为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱锥中,平面平面,,点,,分别为线段,,的中点,点是线段的中点.求证:(1)平面;(2).18.在直三棱柱中,,,,分别是,的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.19.为了了解某省各景区在大众中的熟知度,随机从本省岁的人群中抽取了人,得到各年龄段人数的频率分布直方图如图所示,现让他们回答问题“该省有哪几个国家级旅游景区?”,统计结果如下表所示:组号分组回答正确的人数回答正确的人数占本组的频率第组第组第组第组第组(1)分别求出的值;(2)从第组回答正确的人中用分层抽样的方法抽取人,求第组每组抽取的人数;(3)在(2)中抽取的人中随机抽取人,求所抽取的人中恰好没有年龄段在的概率20.已知的内角所对的边分别为,且,.(1)若,求角的值;(2)若,求的值.21.已知等差数列{an}满足a2=0,a6+a8=-10.(1)求数列{an}的通项公式;(2)求数列的前n项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
线性规划问题,首先画出可行域,再令z=0,画出目标函数,上下平移得到z的最值。【详解】可行域如图所示,当目标函数平移到A点时z取最小值,故选A【点睛】线性规划中线性的目标函数问题,首先画出可行域,再令z=0,画出目标函数,上下平移得到z的最值。2、B【解析】
由条件求出t的范围,不等式变形为恒成立,即不等式恒成立,再由不等式的左边两个因式同为正或同为负处理.【详解】由得,,
不等式恒成立,即不等式恒成立,即不等式恒成立,
只需或恒成立,
只需或恒成立,
只需或即可.
故选:B.【点睛】本题考查了一元二次不等式的解法问题,难度较大,充分利用恒成立的思想解题是关键.3、C【解析】
根据圆的标准方程的形式写.【详解】圆心为,半径为2的圆的标准方程是.故选C.【点睛】本题考查了圆的标准方程,故选C.4、B【解析】
去掉最低分分,最高分分,利用平均数的计算公式求得,利用方差公式求得.【详解】去掉最低分分,最高分分,得到数据,该组数据的平均数,.【点睛】本题考查从茎叶图中提取信息,并对数据进行加工和处理,考查基本的运算求解和读图的能力.5、D【解析】
利用正弦函数、余弦函数的图象和性质,逐一检验,可得结论.【详解】A,对于y=cos(),它的周期为4π,故不满足条件.B,对于y=sin(2x),在区间上,2x∈[,],故该函数在区间上不是单调递增函数,故不满足条件.C,对于y=cos(2x),当x时,函数y,不是最值,故不满足②它的图象关于直线x对称,故不满足条件.D,对于y=sin(2x),它的周期为π,当x时,函数y=1,是函数的最大值,满足它的图象关于直线x对称;且在区间上,2x∈[,],故该函数在区间上是单调递增函数,满足条件.故选:D.【点睛】本题主要考查了正弦函数、余弦函数的图象和性质,属于中档题.6、B【解析】
过该圆锥顶点S的截面三角形面积最大是直角三角形,根据面积为2求出圆锥的母线长,再根据正视图求圆锥底面圆的半径,最后根据扇形面积公式求圆锥的侧面积.【详解】过该圆锥顶点S的截面三角形面积最直角三角形,设圆锥的母线长和底面圆的半径分别为,则,即,又,所以圆锥的侧面积;故选B.【点睛】本题考查三视图及圆锥有关计算,此题主要难点在于判断何时截面三角形面积最大,要结合三角形的面积公式,当,即截面是等腰直角三角时面积最大.7、D【解析】
根据对称中心,结合的范围可求得,从而得到函数解析式;将所给区间代入求得的范围,与的单调区间进行对应可得到结果.【详解】为函数的对称中心,解得:,当时,,此时不单调,错误;当时,,此时不单调,错误;当时,,此时不单调,错误;当时,,此时单调递增,正确本题正确选项:【点睛】本题考查正切型函数单调区间的求解问题,涉及到利用正切函数的对称中心求解函数解析式;关键是能够采用整体对应的方式,将正切型函数与正切函数进行对应,从而求得结果.8、B【解析】试题分析:点关于轴的对称点,则反射光线即在直线上,由,∴,故选B.考点:直线方程的几种形式.9、B【解析】
根据对数函数的性质判断.【详解】∵,∴,∵,∴,又,∴,故选B.【点睛】本题考查对数函数的性质,掌握对数函数的单调性是解题关键.10、B【解析】
根据等比数列前项和的性质,可以得到等式,化简选出正确答案.【详解】因为这个数列是等比数列,所以成等比数列,因此有,故本题选B.【点睛】本题考查了等比数列前项和的性质,考查了数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由于,则,然后将代入中,化简即可得结果.【详解】,,,故答案为.【点睛】本题考查了同角三角函数的关系,属于基础题.同角三角函数之间的关系包含平方关系与商的关系,平方关系是正弦与余弦值之间的转换,商的关系是正余弦与正切之间的转换.12、【解析】
根据等比数列中,,得到公比,再写出和,从而得到.【详解】因为为等比数列,,,所以,所以,,所以.故答案为:.【点睛】本题考查等比数列通项公式中的基本量计算,属于简单题.13、【解析】
根据,两个向量平行的条件是建立等式,解之即可.【详解】解:因为,,且所以解得故答案为:【点睛】本题主要考查两个向量坐标形式的平行的充要条件,属于基础题.14、【解析】
作出图形,设正方体的棱长为,取的中点,连接、,推导出,并证明出,可得出异面直线、所成的角为,并计算出、,可得出,进而得解.【详解】如下图所示,设正方体的棱长为,取的中点,连接、,为的中点,则,,且,为的中点,,,在正方体中,且,则四边形为平行四边形,,所以,异面直线、所成的角为,在中,,,.因此,异面直线、所成角的正弦值为.故答案为:.【点睛】本题考查异面直线所成角的正弦值的计算,考查计算能力,属于中等题.15、【解析】
根据题意,建立坐标系,求出圆心角扇形区域的面积,进而设,由数量积的计算公式可得满足的区域,求出其面积,代入几何概率的计算公式即可求解.【详解】根据题意,建立如图的坐标系,则则扇形的面积为设若,则有,即;则满足的区域为如图的阴影区域,直线与弧的交点为,易得的坐标为,则阴影区域的面积为故的概率故答案为:【点睛】本题考查几何概型,涉及数量积的计算,属于综合题.16、3【解析】
先由频率之和等于1得出的值,计算身高在,,的频率之比,根据比例得出身高在内的学生中抽取的人数.【详解】身高在,,的频率之比为所以从身高在内的学生中抽取的人数应为故答案为:【点睛】本题主要考查了根据频率分布直方图求参数的值以及分层抽样计算各层总数,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】
(1)连AF交BE于Q,连QO,推导出Q是△PAB的重心,从而FG∥QO,由此能证明FG∥平面EBO.(2)推导出BO⊥AC,从而BO⊥面PAC,进而BO⊥PA,再求出OE⊥PA,由此能证明PA⊥平面EBO,利用线面垂直的性质可证PA⊥BE.【详解】(1)连接AF交BE于Q,连接QO,因为E,F分别为边PA,PB的中点,所以Q为△PAB的重心,可得:2,又因为O为线段AC的中点,G是线段CO的中点,所以2,于是,所以FG∥QO,因为FG⊄平面EBO,QO⊂平面EBO,所以FG∥平面EBO.(2)因为O为边AC的中点,AB=BC,所以BO⊥AC,因为平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,BO⊂平面ABC,所以BO⊥平面PAC,因为PA⊂平面PAC,所以BO⊥PA,因为点E,O分别为线段PA,AC的中点,所以EO∥PC,因为PA⊥PC,所以PA⊥EO,又BO∩OE=O,BO,EO⊂平面EBO,所以PA⊥平面EBO,因为BE⊂平面EBO,所以PA⊥BE.【点睛】本题考查线面垂直、线面平行的证明,考查空间中线线、线面、面面间的关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.18、(1)证明见解析。(2)【解析】
(1)首先根据已知得到,再根据线面平行的判定即可得到平面.(2)首先根据线面垂直的判定证明平面,即可找到为与平面所成角,在计算其正弦值即可.【详解】(1)因为分别是,的中点,所以四边形为平行四边形,即.平面,所以平面.(2)因为,为中点,所以.平面.所以为与平面所成角.在中,,,所以,.在中,,,所以.【点睛】本题第一问考查线面平行的判定,本题第二问考查线面成角,属于中档题.19、(1),,,;(2)分边抽取2,3,1人;(3).【解析】
(1)根据数据表和频率分布直方图可计算得到第组的人数和频率,从而可得总人数;根据总数、频率和频数的关系,可分别计算得到所求结果;(2)首先确定第组的总人数,根据分层抽样原则计算即可得到结果;(3)首先计算得到基本事件总数;再计算出恰好没有年龄段在包含的基本事件个数,根据古典概型概率公式可求得结果.【详解】(1)第组的人数为:人,第组的频率为:第一组的频率为第一组的人数为:第二组的频率为第二组的人数为:第三组的频率为第三组的人数为:第五组的频率为第五组的人数为:(2)第组的总人数为:人第组抽取的人数为:人;第组抽取的人数为:人;第组抽取的人数为:人(3)在(2)中抽取的人中随机抽取人,基本事件总数为:所抽取的人中恰好没有年龄段在包含的基本事件个数为:所抽取的人中恰好没有年龄段在的概率:【点睛】本题考查利用频率分布直方图计算总数、频数和频率、分层抽样基本方法的应用、古典概型计算概率问题;关键是熟练掌握频率分布直方图的相关知识,能够通过频率分布直方图准确计算出各组数据对应的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 孩子抚养协议书范文
- 企业法人转让协议书
- 手房买卖合同协议电子版
- 2024年度企业碳足迹评估与减排合同3篇
- 手房房屋买卖合同
- 广告代理合作的协议书
- 铝合金船体建造与购买合同(2024版)
- 农产品加工2024年度生产线改造合同
- 门面房装修设计与施工合同(2024版)
- 《高效率早会教材》课件
- 2024榆林粮食和物资储备集团有限公司招聘(6人)笔试备考题库及答案解析
- 2024年劳务员考试题库【夺冠】
- 2024届高考高考英语高频单词素材
- 安全事故管理考核办法范本(2篇)
- 人教版四年级上册数学第六单元《除数是两位数的除法》测试卷及完整答案
- 英语-重庆市(重庆南开中学)高2025届高三第三次质量检测试题和答案
- 中国咳嗽基层诊疗与管理指南(2024年)解读
- DB11-239-2021 车用柴油环保技术要求
- 三好学生竞选17
- 认养树的合同(2篇)
- 第四单元(整体教学课件)七年级语文上册大单元教学名师备课系列(统编版2024)
评论
0/150
提交评论