版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东实验中学高一数学第二学期期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则下列不等式中正确的是()A. B.C. D.2.若双曲线的渐近线与直线所围成的三角形面积为2,则该双曲线的离心率为()A. B. C. D.3.垂直于同一条直线的两条直线一定()A.平行 B.相交 C.异面 D.以上都有可能4.设a>0,b>0,若是和的等比中项,则的最小值为()A.6 B. C.8 D.95.将函数的图像上所有的点向左平移个单位长度,再把所得图像上各点的横坐标伸长到原来的3倍(纵坐标不变),得到函数的图像,则在区间上的最小值为()A. B. C. D.6.已知关于的不等式的解集为空集,则实数的取值范围是()A. B. C. D.7.一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,从中任意取出一个,则取出的小正方体两面涂有油漆的概率是()A.127 B.29 C.48.在中,所对的边分别为,若,,,则()A. B. C.1 D.39.在复平面内,复数满足,则的共轭复数对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知等比数列中,,,则()A.10 B.7 C.4 D.12二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的最大值是____.12.在等比数列中,已知,则=________________.13.已知角的终边经过点,则的值为__________.14.在正四面体中,棱与所成角大小为________.15.方程组的增广矩阵是________.16.已知角α的终边与单位圆交于点.则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象向左平移个单位长度后与函数图象重合.(1)求和的值;(2)若函数,求函数的单调递减区间及图象的对称轴方程.18.已知函数(1)求函数的单调递减区间;(2)若将函数图象上所有点的横坐标缩短为原来的倍,纵坐标不变,然后再向右平移()个单位长度,所得函数的图象关于轴对称.求的最小值19.在中,内角、、的对边分别为、、,且.(1)求角的大小;(2)若,求的最大值及相应的角的余弦值.20.如图,在边长为2菱形ABCD中,,且对角线AC与BD交点为O.沿BD将折起,使点A到达点的位置.(1)若,求证:平面ABCD;(2)若,求三棱锥体积.21.如图,在中,,角的平分线交于点,设,其中.(1)求;(2)若,求的长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
取,则,,只有B符合.故选B.考点:基本不等式.2、A【解析】渐近线为,时,,所以,即,,,故选A.3、D【解析】试题分析:根据在同一平面内两直线平行或相交,在空间内两直线平行、相交或异面判断.解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面.故选D考点:空间中直线与直线之间的位置关系.4、D【解析】
试题分析:由题意a>0,b>0,且是和的等比中项,即,则,当且仅当时,即时取等号.考点:重要不等式,等比中项5、A【解析】
先按照图像变换的知识求得的解析式,然后根据三角函数求最值的方法,求得在上的最小值.【详解】图像上所有的点向左平移个单位长度得到,把所得图像上各点的横坐标伸长到原来的倍(纵坐标不变)得到,由得,故在区间上的最小值为.故选A.【点睛】本小题主要考查三角函数图像变换,考查三角函数值域的求法,属于基础题.6、C【解析】
由题意得出关于的不等式的解集为,由此得出或,在成立时求出实数的值代入不等式进行验证,由此解不等式可得出实数的取值范围.【详解】由题意知,关于的不等式的解集为.(1)当,即.当时,不等式化为,合乎题意;当时,不等式化为,即,其解集不为,不合乎题意;(2)当,即时.关于的不等式的解集为.,解得.综上可得,实数的取值范围是.故选:C.【点睛】本题考查二次不等式在上恒成立问题,求解时根据二次函数图象转化为二次项系数和判别式的符号列不等式组进行求解,考查化归与转化思想,属于中等题.7、C【解析】
先求出基本事件总数n=27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,由此能求出在27个小正方体中,任取一个其两面涂有油漆的概率.【详解】∵一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,∴基本事件总数n=27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,则在27个小正方体中,任取一个其两面涂有油漆的概率P=1227=故选:C【点睛】本题考查概率的求法,考查古典概型、正方体性质等基础知识,考查推理论证能力、空间想象能力,考查函数与方程思想,是基础题.8、A【解析】
利用三角形内角和为,得到,利用正弦定理求得.【详解】因为,,所以,在中,,所以,故选A.【点睛】本题考查三角形内角和及正弦定理的应用,考查基本运算求解能力.9、A【解析】
把已知等式变形,利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案.【详解】由z(1﹣i)=2,得z=,∴.则z的共轭复数对应的点的坐标为(1,﹣1),位于第四象限.故选D.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.10、C【解析】
由等比数列性质可知,进而根据对数的运算法则计算即可【详解】由题,因为等比数列,所以,则,故选:C【点睛】本题考查等比数列的性质的应用,考查对数的运算二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】
利用对数的运算法则以及二次函数的最值化简求解即可.【详解】,,,则.当且仅当时,函数取得最大值.【点睛】本题主要考查了对数的运算法则应用以及利用二次函数的配方法求最值.12、【解析】13、【解析】按三角函数的定义,有.14、【解析】
根据正四面体的结构特征,取中点,连,,利用线面垂直的判定证得平面,进而得到,即可得到答案.【详解】如图所示,取中点,连,,正四面体是四个全等正三角形围成的空间封闭图形,所有棱长都相等,所以,,且,所以平面,又由平面,所以,所以棱与所成角为.【点睛】本题主要考查了异面直线所成角的求解,以及直线与平面垂直的判定及应用,着重考查了推理与论证能力,属于基础题.15、【解析】
理解方程增广矩阵的涵义,即可由二元线性方程组,写出增广矩阵.【详解】由题意,方程组的增广矩阵为其系数以及常数项构成的矩阵,故方程组的增广矩阵是.故答案为:【点睛】本题考查了二元一次方程组与增广矩阵的关系,需理解增广矩阵的涵义,属于基础题.16、【解析】
直接利用三角函数的坐标定义求解.【详解】由题得.故答案为【点睛】本题主要考查三角函数的坐标定义,意在考查学生对该知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)减区间为,对称轴方程为【解析】
(1)先根据平移后周期不变求得,再根据三角函数的平移方法求得即可.(2)根据(1)中,代入可得,利用辅助角公式求得,再代入调递减区间及图象的对称轴方程求解即可.【详解】(1)因为函数的图象向左平移个单位长度后与函数图象重合,所以.所以,因为,所以.(2)由(1),,所以,.令,解得所以函数的单调递减区间为.令,可得图象的对称轴方程为.【点睛】本题主要考查了三角函数的平移运用以及辅助角公式.同时也考查了根据三角函数的解析式求解单调区间以及对称轴等方法.属于中档题.18、(1),,.(2).【解析】
(1)根据诱导公式,二倍角公式,辅助角公式把化为的形式,再根据复合函数单调性求解;(2)先根据变换关系得到函数解析式,所得函数的图象关于轴对称,则时,.【详解】(1)当即时,函数单调递减,所以函数的单调递减区间为.(2)将函数图象上所有点的横坐标缩短为原来的倍,纵坐标不变,然后再向右平移()个单位长度,所得函数为,若图象关于轴对称,则,即,解得,又,则当时,有最小值.【点睛】本题主要考查三角函数的性质和图像的变换.关键在于化为的形式,三角函数的平移变换是易错点.19、(1)(2)的最大值为,此时【解析】
(1)由正弦定理边角互化思想结合内角和定理、诱导公式可得出的值,结合角的取值范围可得出角的大小;(2)由正弦定理得出,,然后利用三角恒等变换思想将转化为关于角的三角函数,可得出的值,并求出的值.【详解】(1)由正弦定理得,即,从而有,即,由得,因为,所以;(2)由正弦定理可知,,则有,,,其中,因为,所以,所以当时,取得最大值,此时,所以,的最大值为,此时.【点睛】本题考查正弦定理边角互化思想的应用,考查内角和定理、诱导公式,以及三角形中最值的求解,求解时常利用正弦定理将边转化为角的三角函数来求解,解题时要充分利用三角恒等变换思想将三角函数解析式化简,考查运算求解能力,属于中等题.20、(1)见解析(2)【解析】
(1)证明与即可.(2)法一:证明平面,再过点做垂足为,证明为三棱锥的高再求解即可.法二:通过进行转化求解即可.法三:通过进行转化求解即可.【详解】证明:(1)∵在菱形ABCD中,,,AC与BD交于点O.以BD为折痕,将折起,使点A到达点的位置,∴,又,,∴,∴,∵,∴平面ABCD(2)(法一):∵,,取的中点,则且,因为且,,所以平面,过点做垂足为,则平面BCD,又∴,解得,∴三棱锥体积.(法二):因为,,取AC中点E,,,,又(法三)因为且,,所以平面,,所以.【点睛】本题主
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 皮肤黑色素瘤的临床护理
- 《数字证书及公钥》课件
- 化脓性鼻窦炎的健康宣教
- 天疱疮的临床护理
- 《单片机原理及应用 》课件-第8章
- 《Java程序设计及移动APP开发》课件-第07章
- 手癣的临床护理
- 变应性接触性皮炎的临床护理
- 《齿轮西农版》课件
- JJF(陕) 050-2021 光电式皮带张力计校准规范
- 信息安全意识培训课件
- 攀岩智慧树知到期末考试答案章节答案2024年华中农业大学
- MOOC 理解马克思-南京大学 中国大学慕课答案
- 铁路工程工程量清单计价指南(土建部分)
- 《中国古代文学史——第四编:隋唐五代文学》PPT课件(完整版)
- 中央企业开展网络安全工作策略和方式
- 《美团外卖商家运营》PPT精选文档
- 《从百草园到三味书屋》阅读理解题
- 人教版三年级数学上册《第5单元 知识梳理和综合提升》作业课件PPT优秀教学课件
- 涂色画简笔画已排可直接打印涂色
- 空调维修派工单(共1页)
评论
0/150
提交评论