2024届吉林省名校高一数学第二学期期末调研试题含解析_第1页
2024届吉林省名校高一数学第二学期期末调研试题含解析_第2页
2024届吉林省名校高一数学第二学期期末调研试题含解析_第3页
2024届吉林省名校高一数学第二学期期末调研试题含解析_第4页
2024届吉林省名校高一数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省名校高一数学第二学期期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.2.已知数列的前项和为,令,记数列的前项为,则()A. B. C. D.3.设的内角A,B,C所对的边分别为a,b,c.若,,则角()A. B. C. D.4.设为所在平面内一点,若,则下列关系中正确的是()A. B.C. D.5.将函数的图像上所有的点向左平移个单位长度,再把所得图像上各点的横坐标伸长到原来的3倍(纵坐标不变),得到函数的图像,则在区间上的最小值为()A. B. C. D.6.甲、乙两名同学八次数学测试成绩的茎叶图如图所示,则甲同学成绩的众数与乙同学成绩的中位数依次为()A.85,85 B.85,86 C.85,87 D.86,867.数列,通项公式为,若此数列为递增数列,则的取值范围是A. B. C. D.8.已知,则的值等于()A.2 B. C. D.9.平面直角坐标系中,O为坐标原点,点A,B的坐标分别为(1,1),(-3,3).若动点P满足,其中λ,μ∈R,且λ+μ=1,则点P的轨迹方程为()A. B. C. D.10.从装有红球和绿球的口袋内任取2个球(其中红球和绿球都多于2个),那么互斥而不对立的两个事件是()A.至少有一个红球,至少有一个绿球B.恰有一个红球,恰有两个绿球C.至少有一个红球,都是红球D.至少有一个红球,都是绿球二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列满足,则__________.12.如图,已知六棱锥的底面是正六边形,平面,,给出下列结论:①;②直线平面;③平面平面;④异面直线与所成角为;⑤直线与平面所成角的余弦值为.其中正确的有_______(把所有正确的序号都填上)13.在边长为2的正三角形ABC内任取一点P,则使点P到三个顶点的距离至少有一个小于1的概率是________.14.在上,满足的的取值范围是______.15.已知,若方程的解集为,则__________.16.的内角的对边分别为.若,则的面积为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的最小正周期为,且该函数图象上的最低点的纵坐标为.(1)求函数的解析式;(2)求函数的单调递增区间及对称轴方程.18.解关于不等式:19.已知,.求和的值.20.已知函数,且.(1)求的值;(2)求的最小正周期及单调递增区间.21.在平面直角坐标系中,为坐标原点,已知向量,又点,,,.(1)若,且,求向量;(2)若向量与向量共线,常数,求的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由几何体的三视图得该几何体是一个底面半径,高的扣在平面上的半圆柱,由此能求出该几何体的体积【详解】由几何体的三视图得:

该几何体是一个底面半径,高的放在平面上的半圆柱,如图,

故该几何体的体积为:故选:D【点睛】本题考查几何体的体积的求法,考查几何体的三视图等基础知识,考查推理能力与计算能力,是中档题.2、B【解析】

由数列的前项和求通项,再由数列的周期性及等比数列的前项和求解.【详解】因为,当时,得;当,且时,,不满足上式,∴,所以,当时,;当是偶数时,为整数,则,所以;故对于任意正整数,均有:因为,所以.因为为偶数,所以,而,所以.故选:B.【点睛】本题考查数列的函数概念与表示、余弦函数的性质、正弦函数的诱导公式以及数列求和,解题的关键是当时,,和的推导,本题属于难题.3、B【解析】

根据正弦定理,可得,进而可求,再利用余弦定理,即可得结果.【详解】,∴由正弦定理,可得3b=5a,,,,,故选:B.【点睛】本题主要考查余弦定理及正弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1);(2).4、A【解析】

∵∴−=3(−);∴=−.故选A.5、A【解析】

先按照图像变换的知识求得的解析式,然后根据三角函数求最值的方法,求得在上的最小值.【详解】图像上所有的点向左平移个单位长度得到,把所得图像上各点的横坐标伸长到原来的倍(纵坐标不变)得到,由得,故在区间上的最小值为.故选A.【点睛】本小题主要考查三角函数图像变换,考查三角函数值域的求法,属于基础题.6、B【解析】

根据茎叶图的数据,选择对应的众数和中位数即可.【详解】由图可知,甲同学成绩的众数是85;乙同学的中位数是.故选:B.【点睛】本题考查由茎叶图计算数据的众数和中位数,属基础计算题.7、B【解析】因为的对称轴为,因为此数列为递增数列,所以.8、D【解析】

根据分段函数的定义域以及函数解析式的关系,代值即可.【详解】故选:D【点睛】本题考查了分段函数的求值问题,考查了学生综合分析,数学运算能力,属于基础题.9、C【解析】

设点坐标,代入,得到即,再根据,即可求解.【详解】设点坐标,因为点的坐标分别为,将各点坐标代入,可得,即,解得,代入,化简得,故选C.【点睛】本题主要考查了平面向量的坐标运算和点的轨迹的求解,其中解答中熟记向量的坐标运算,以及平面向量的基本定理是解答的关键,着重考查了推理运算能力,属于基础题.10、B【解析】由于从口袋中任取2个球有三个事件,恰有一个红球,恰有两个绿球,一红球和一绿球.所以恰有一个红球,恰有两个绿球是互斥而不对立的两个事件.因而应选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由等差数列的性质计算.【详解】∵是等差数列,∴,∴.故答案为:1.【点睛】本题考查等差数列的性质,属于基础题.等差数列的性质如下:在等差数列中,,则.12、①③④⑤【解析】

设出几何体的边长,根据正六边形的性质,线面垂直的判定定理,线面平行的判定定理,面面垂直的判定定理,异面直线所成角,线面角有关知识,对五个结论逐一分析,由此得出正确结论的序号.【详解】设正六边形长为,则.根据正六边形的几何性质可知,由平面得,所以平面,所以,故①正确.由于,而,所以直线平面不正确,故②错误.易证得,所以平面,所以平面平面,故③正确.由于,所以是异面直线与所成角,在中,,故,也即异面直线与所成角为,故④正确.连接,则,由①证明过程可知平面,所以平面,所以是所求线面角,在三角形中,,由余弦定理得,故⑤正确.综上所述,正确的序号为①③④⑤.【点睛】本小题主要考查线面垂直的判定,面面垂直的判定,考查线线角、线面角的求法,属于中档题.13、【解析】以A,B,C为圆心,以1为半径作圆,与△ABC交出三个扇形,当P落在其内时符合要求,∴P==.14、【解析】

由,结合三角函数线,即可求解,得到答案.【详解】如图所示,因为,所以满足的的取值范围为.【点睛】本题主要考查了特殊角的三角函数值,以及三角函数线的应用,着重考查了推理与运算能力,属于基础题.15、【解析】

将利用辅助角公式化简,可得出的值.【详解】,其中,,因此,,故答案为.【点睛】本题考查利用辅助角公式化简计算,化简时要熟悉辅助角变形的基本步骤,考查运算求解能力,属于中等题.16、【解析】

本题首先应用余弦定理,建立关于的方程,应用的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【详解】由余弦定理得,所以,即解得(舍去)所以,【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)增区间是,对称轴为【解析】

(1)由周期求得ω,再由函数图象上的最低点的纵坐标为﹣3求得A,则函数解析式可求;(2)直接利用复合函数的单调性求函数f(x)的单调递增区间,再由2x求解x可得函数f(x)的对称轴方程.【详解】(1)因为的最小正周期为因为,,,∴.又函数图象上的最低点纵坐标为,且∴∴.(2)由,可得可得单调递增区间.由,得.所以函数的对称轴方程为.【点睛】本题考查函数解析式的求法,考查y=Asin(ωx+φ)型函数的性质,是基础题.18、当时,;当时,;当时,;当时,;当时,【解析】试题分析:当时,;当时,当时,;当时,;当时,考点:解不等式点评:本题中的不等式带有参数,在求解时需对参数做适当的分情况讨论,题目中主要讨论的方向是:不等式为一次不等式或二次不等式,解二次不等式与二次方程的根有关,进而讨论二次方程的根的大小19、,【解析】

把已知等式两边平方,利用同角三角函数基本关系化简,可得的值,同时由与的值可判断出,,计算出的值,可得的值.【详解】解:,两边同时平方可得:,又,,∴∴,∴【点睛】同时主要考查同角三角函数关系式的应用,相对不难,注意运算的准确性.20、(1);(2)最小正周期为,单调递增区间为,.【解析】

(1)因为,所以,化简解方程即得.(2)由(1)可得求出函数的最小正周期,再利用复合函数和三角函数的图像和性质求函数的单调递增区间得解.【详解】解:(1)因为,所以,所以,即,解得.(2)由(1)可得,则的最小正周期为.令,,解得,,故的单调递增区间为,.【点睛】本题主要考查三角恒等变换和三角求值,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题.21、(1)或;(2)当时的值域为.时的值域为.【解析】分析:(1)由已知表示出向量,再根据,且,建立方程组求出,即可求得向量;(2)由已知表示出向量,结合向量与向量共线,常数,建立的表达式,代入

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论