版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古自治区呼和浩特市第六中学2024年高一下数学期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在三棱锥中,,,则三棱锥外接球的体积是()A. B. C. D.2.下列函数中,既是奇函数又是增函数的为()A. B. C. D.3.已知直线,直线,若,则直线与的距离为()A. B. C. D.4.已知向量,,若,共线,则实数()A. B. C. D.65.在等差数列中,已知=2,=16,则为()A.8 B.128 C.28 D.146.四边形,,,,则的外接圆与的内切圆的公共弦长()A. B. C. D.7.已知直线经过点,且倾斜角为,则直线的方程为()A. B.C. D.8.若a,b,c∈R,且满足a>b>c,则下列不等式成立的是()A.1a<C.ac29.在等差数列中,若,则的值为()A.15 B.21 C.24 D.1810.执行如图的程序框图,则输出的λ是()A.-2 B.-4 C.0 D.-2或0二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边上一点P落在直线上,则______.12.求374与238的最大公约数结果用5进制表示为_________.13.已知数列的通项公式,则_______.14.已知函数那么的值为.15.在正方体中,是棱的中点,则异面直线与所成角的余弦值为__________.16.数列中,其前n项和,则的通项公式为______________..三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.平面四边形中,.(1)若,求;(2)设,若,求面积的最大值.18.已知等比数列的公比,且的等差中项为10,.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.19.已知关于的不等式.(1)若不等式的解集为,求;(2)当时,解此不等式.20.已知(1)求的值;(2)求的最小值以及取得最小值时的值21.已知函数在上的最大值为3.(1)求的值及函数的单调递增区间;(2)若锐角中角所对的边分别为,且,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
三棱锥是正三棱锥,取为外接圆的圆心,连结,则平面,设为三棱锥外接球的球心,外接球的半径为,可求出,然后由可求出半径,进而求出外接球的体积.【详解】由题意,易知三棱锥是正三棱锥,取为外接圆的圆心,连结,则平面,设为三棱锥外接球的球心.因为,所以.因为,所以.设三棱锥外接球的半径为,则,解得,故三棱锥外接球的体积是.故选B.【点睛】本题考查了三棱锥的外接球体积的求法,考查了学生的空间想象能力与计算求解能力,属于中档题.2、D【解析】
根据奇函数和增函数的定义逐项判断.【详解】选项A:不是奇函数,不正确;选项B::在是减函数,不正确;选项C:定义域上没有单调性,不正确;选项D:设,是奇函数,,在都是单调递增,且在处是连续的,在上单调递增,所以正确.故选:D.【点睛】本题考查函数的性质,对于常用函数的性质要熟练掌握,属于基础题.3、A【解析】
利用直线平行的性质解得,再由两平行线间的距离求解即可【详解】∵直线l1:ax+2y﹣1=0,直线l2:8x+ay+2﹣a=0,l1∥l2,∴,且解得a=﹣1.所以直线l1:1x-2y+1=0,直线l2:1x-2y+3=0,故与的距离为故选A.【点睛】本题考查实数值的求法,是基础题,解题时要认真审题,注意直线平行的性质的灵活运用.4、C【解析】
利用向量平行的性质直接求解.【详解】向量,,共线,,解得实数.故选:.【点睛】本题主要考查向量平行的性质等基础知识,考查运算求解能力,是基础题.5、D【解析】
将已知条件转化为的形式列方程组,解方程组求得,进而求得的值.【详解】依题意,解得,故.故选:D.【点睛】本小题主要考查等差数列通项的基本量计算,属于基础题.6、C【解析】
以为坐标原点,以为轴,轴建立平面直角坐标系,求出的外接圆与的内切圆的方程,两圆方程相减可得公共弦所在直线方程,求出弦心距,进而可得公共弦长.【详解】解:以为坐标原点,以为轴,轴建立平面直角坐标系,过作交于点,则,故,则为等边三角形,故,的外接圆方程为,①的内切圆方程为,②①-②得两圆的公共弦所在直线方程为:,的外接圆圆心到公共弦的距离为,公共弦长为,故答案为:C.【点睛】本题考查两圆公共弦长的求解,关键是要求出两圆的公共弦所在直线方程,将两圆方程作差即可得到,是中档题.7、C【解析】
根据倾斜角求得斜率,再根据点斜式写出直线方程,然后化为一般式.【详解】倾斜角为,斜率为,由点斜式得,即.故选C.【点睛】本小题主要考查倾斜角与斜率对应关系,考查直线的点斜式方程和一般式方程,属于基础题.8、C【解析】
通过反例可依次排除A,B,D选项;根据不等式的性质可判断出C正确.【详解】A选项:若a=1,b=-2,则1a>1B选项:若a=1,b=12,则1aC选项:c2+1>0又a>b∴ac2D选项:当c=0时,ac=bc本题正确选项:C【点睛】本题考查不等式性质的应用,解决此类问题通常采用排除法,利用反例来排除错误选项即可,属于基础题.9、D【解析】
利用等差数列的性质,将等式全部化为的形式,再计算。【详解】因为,且,则,所以.故选D【点睛】本题考查等差数列的性质,属于基础题。10、A【解析】
根据框图有,由判断条件即即可求出的值.【详解】由有.根据输出的条件是,即.所以,解得:.故选:A【点睛】本题考查程序框图和向量的加法以及数量积以及性质,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由于角的终边上一点P落在直线上,可得,根据二倍角公式以及三角函数基本关系,可得,代入,可求得结果.【详解】因为角的终边上一点P落在直线上,所以,.故答案为:【点睛】本题考查同角三角函数的基本关系,巧用“1”是解决本题的关键.12、【解析】
根据最大公约数的公式可求得两个数的最大公约数,再由除取余法即可将进制进行转换.【详解】374与238的最大公约数求法如下:,,,,所以两个数的最大公约数为34.由除取余法可得:所以将34化为5进制后为,故答案为:.【点睛】本题考查了最大公约数的求法,除取余法进行进制转化的应用,属于基础题.13、【解析】
本题考查的是数列求和,关键是构造新数列,求和时先考虑比较特殊的前两项,剩余7项按照等差数列求和即可.【详解】令,则所求式子为的前9项和.其中,,从第三项起,是一个以1为首项,4为公差的等差数列,,故答案为1.【点睛】本题考查的是数列求和,关键在于把所求式子转换成为等差数列的前项和,另外,带有绝对值的数列在求和时要注意里面的特殊项.14、【解析】试题分析:因为函数所以==.考点:本题主要考查分段函数的概念,计算三角函数值.点评:基础题,理解分段函数的概念,代入计算.15、【解析】
假设正方体棱长,根据//,得到异面直线与所成角,计算,可得结果.【详解】假设正方体棱长为1,因为//,所以异面直线与所成角即与所成角则角为如图,所以故答案为:【点睛】本题考查异面直线所成的角,属基础题.16、【解析】
利用递推关系,当时,,当时,,即可求出.【详解】由题知:当时,.当时,.检验当时,,所以.故答案为:【点睛】本题主要考查根据数列的前项和求数列的通项公式,体现了分类讨论的思想,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)法一:在中,利用余弦定理即可得到的长度;法二:在中,由正弦定理可求得,再利用正弦定理即可得到的长度;(2)在中,使用正弦定理可知是等边三角形或直角三角形,分两种情况分别找出面积表达式计算最大值即可.【详解】(1)法一:中,由余弦定理得,即,解得或舍去,所以.法二:中,由正弦定理得,即.解得,故,.由正弦定理得,即,解得.(2)中,由正弦定理及,可得,即或,即或.是等边三角形或直角三角形.中,设,由正弦定理得.若是等边三角形,则.∵当时,面积的最大值为;若是直角三角形,则.当时,面积的最大值为;综上所述,面积的最大值为.【点睛】本题主要考查正弦定理,余弦定理,面积公式,三角函数最值的相关应用,综合性强,意在考查学生的计算能力,转化能力,分析三角形的形状并讨论是解决本题的关键.18、(Ⅰ).(Ⅱ)【解析】
(Ⅰ)利用已知条件求出首项与公差,然后根据等比数列的通项公式,即可求出结果;(Ⅱ)先求出,再利用错位相减法求数列的前项和.【详解】解析:(Ⅰ)由题意可得:,∴∵,∴,∴数列的通项公式为.(Ⅱ),∴上述两式相减可得∴=【点睛】本题考查等比数列通项公式的求法,以及利用错位相减法求和,考查计算能力,属于基础题.19、(1)2(2)时,,时,,时,不等式的解集为空集,时,,时,.【解析】
(1)根据不等式的解集和韦达定理,可列出关于a的方程组,解得a;(2)不等式化为,讨论a的取值,从而求得不等式的解集。【详解】(1)由题得,,解集为,则有,解得;(2)由题,:当时,不等式化为,解得;当时,不等式等价于,若,解得;若,解得,若,解得;当时,不等式等价于,解得或.综上,时,不等式的解集为,时,不等式的解集为,时,不等式的解集为空集,时,不等式的解集为,时,不等式的解集为.【点睛】本题考查一元二次不等式的解法与应用,以及通过讨论参数取值求不等式的解集,有一定的难度。20、(1)(2)当时,函数取得最小值.【解析】
(1)将代入函数计算得到答案.(2)根据降次公式和辅助角公式化简函数为,当时取最小值.【详解】(1)(2)由可得,故函数的最小值为,当时取得最小值.【点睛】本题考查了三角函数的计算,三角函数的最小值,将三角函数化简为标准形式是解题的关键,意在考查学生的计算能力.21、(1),函数的单调递增区间为;(2).【解析】
(1)运用降幂公式和辅助角公式,把函数的解析式化为正弦型函数解析式形式,根据已知,可以求出的值,再结合正弦型函数的性质求出函数的单调递增区间;(2)由(1)结合已知,可以求出角的值,通过正弦定理把问题的取值范围转化为两边对角的正弦值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐饮商标使用合同模板
- 保洁劳务分包安全协议书
- 股权收购合同新
- 机电销售合同模板
- 经纪人与艺人合作合同范本
- 江西省景德镇市2024年七年级上学期数学期中考试试卷【附答案】
- 大型酒店装修协议书
- 服装购销合同简单详细版范文
- 163二次根式的加减(原卷版)
- 工程项目内部承包合同
- 2024年新北师大版七年级上册数学课件 第四章 4.1 第1课时 线段、射线、直线的相关概念
- 2025届陕西省西工大附中高三冲刺模拟物理试卷含解析
- 品牌授权收费合同模板
- 2024年刑法知识考试题库及答案(全优)
- 四年级上册信息技术人教版第10课设动作与超链接(教案)
- 空气动力学数值方法:有限体积法(FVM):离散化技术与数值通量
- 合作安全责任协议书范本
- 2024-2030年中国船舶电子导航系统行业市场发展趋势与前景展望战略分析报告
- 2024秋八年级数学上册 第十四章 整式的乘法与因式分解14.1 整式的乘法 4整式的乘法-单项式与单项式相乘教学设计(新版)新人教版
- 小学语文整本书阅读《夏洛的网》导读课公开课一等奖创新教学设计
- 6以内的加减法
评论
0/150
提交评论