江苏省13市2023-2024学年数学高一下期末教学质量检测试题含解析_第1页
江苏省13市2023-2024学年数学高一下期末教学质量检测试题含解析_第2页
江苏省13市2023-2024学年数学高一下期末教学质量检测试题含解析_第3页
江苏省13市2023-2024学年数学高一下期末教学质量检测试题含解析_第4页
江苏省13市2023-2024学年数学高一下期末教学质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省13市2023-2024学年数学高一下期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,是的中点,,,相交于点,若,,则()A.1 B.2 C.3 D.42.已知变量和满足相关关系,变量和满足相关关系.下列结论中正确的是()A.与正相关,与正相关 B.与正相关,与负相关C.与负相关,与y正相关 D.与负相关,与负相关3.数列中,若,,则()A.29 B.2563 C.2569 D.25574.经过原点且倾斜角为的直线被圆C:截得的弦长是,则圆在轴下方部分与轴围成的图形的面积等于()A. B. C. D.5.直线上的点到圆上点的最近距离为()A. B. C. D.16.如图为某班35名学生的投篮成绩(每人投一次)的条形统计图,其中上面部分数据破损导致数据不完全。已知该班学生投篮成绩的中位数是5,则根据统计图,则下列说法错误的是()A.3球以下(含3球)的人数为10B.4球以下(含4球)的人数为17C.5球以下(含5球)的人数无法确定D.5球的人数和6球的人数一样多7.若是两条不同的直线,是三个不同的平面,则下列结论中正确的是()A.若,则 B.若,则C.若,则 D.若,则8.在下列各图中,每个图的两个变量具有相关关系的图是()A.(1)(2) B.(1)(3) C.(2)(4) D.(2)(3)9.若实数满足,则的大小关系是:A. B. C. D.10.将函数的图像上所有的点向左平移个单位长度,再把所得图像上各点的横坐标伸长到原来的3倍(纵坐标不变),得到函数的图像,则在区间上的最小值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.12.在平面直角坐标系中,圆的方程为.若直线上存在一点,使过所作的圆的两条切线相互垂直,则实数的取值范围是______.13.已知正方体的棱长为,点、分别为、的中点,则点到平面的距离为______.14.在等差数列中,,,则的值为_______.15.已知实数满足,则的最小值为_______.16.把二进制数化为十进制数是:______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列是递增数列,且满足:,.(1)求数列的通项公式:(2)设,求数列的前项和.18.已知点.(1)求中边上的高所在直线的方程;(2)求过三点的圆的方程.19.已知,.(1)求;(2)求.20.已知.(1)化简;(2)若是第二象限角,且,求的值.21.已知,,且(1)求的定义域.(2)判断的奇偶性,并说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由题意知,所以,解得,所以,故选D.2、B【解析】

根据相关关系式,由一次项系数的符号即可判断是正相关还是负相关.【详解】变量和满足相关关系,由可知变量和为正相关变量和满足相关关系,由,可知变量和为负相关所以B为正确选项故选:B【点睛】本题考查了通过相关关系式子判断正负相关性,属于基础题.3、D【解析】

利用递推关系,构造等比数列,进而求得的表达式,即可求出,也就可以得到的值。【详解】数列中,若,,可得,所以是等比数列,公比为2,首项为5,所以,.【点睛】本题主要考查数列的通项公式的求法——构造法。利用递推关系,选择合适的求解方法是解决问题的关键,常见的数列的通项公式的求法有:公式法,累加法,累乘法,构造法,取倒数法等。4、A【解析】

由已知利用垂径定理求得,得到圆的半径,画出图形,由扇形面积减去三角形面积求解.【详解】解:直线方程为,圆的圆心坐标为,半径为.圆心到直线的距离.则,解得.圆的圆心坐标为,半径为1.如图,,则,.,,圆在轴下方部分与轴围成的图形的面积等于.故选:.【点睛】本题考查直线与圆位置关系的应用,考查扇形面积的求法,考查计算能力,属于中档题.5、C【解析】

求出圆心和半径,求圆心到直线的距离,此距离减去半径即得所求的结果.【详解】将圆化为标准形式可得可得圆心为,半径,而圆心到直线距离为,

因此圆上点到直线的最短距离为,故选:C.【点睛】本题考查直线和圆的位置关系,点到直线的距离公式的应用,求圆心到直线的距离是解题的关键,属于中档题.6、D【解析】

据投篮成绩的条形统计图,结合中位数的定义,对选项中的命题分析、判断即可.【详解】根据投篮成绩的条形统计图,3球以下(含3球)的人数为,6球以下(含6球)的人数为,结合中位数是5知4球以下(含4球)的人数为不多于17,而由条形统计图得4球以下(含4球)的人数不少于,因此4球以下(含4球)的人数为17所以5球的人数和6球的人数一共是17,显然5球的人数和6球的人数不一样多,故选D.【点睛】本题考查命题真假的判断,考查条形统计图、中位数的性质等基础知识,考查运算求解能力,是基础题.7、C【解析】

试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A不正确;两个相交平面内的直线也可以平行,所以B不正确;垂直于同一个平面的两个平面不一定垂直,也可能平行或相交,所以D不正确;根据面面垂直的判定定理知C正确.考点:空间直线、平面间的位置关系.【详解】请在此输入详解!8、D【解析】

仔细观察图象,寻找散点图间的相互关系,主要观察这些散点是否围绕一条曲线附近排列着,由此能够得到正确答案.【详解】散点图(1)中,所有的散点都在曲线上,所以(1)具有函数关系;

散点图(2)中,所有的散点都分布在一条直线的附近,所以(2)具有相关关系;

散点图(3)中,所有的散点都分布在一条曲线的附近,所以(3)具有相关关系,

散点图(4)中,所有的散点杂乱无章,没有分布在一条曲线的附近,所以(4)没有相关关系.

故选D.【点睛】本题考查散点图和相关关系,是基础题.9、D【解析】分析:先解不等式,再根据不等式性质确定的大小关系.详解:因为,所以,所以选D.点睛:本题考查一元二次不等式解法以及不等式性质,考查基本求解能力与运用性质解决问题能力.10、A【解析】

先按照图像变换的知识求得的解析式,然后根据三角函数求最值的方法,求得在上的最小值.【详解】图像上所有的点向左平移个单位长度得到,把所得图像上各点的横坐标伸长到原来的倍(纵坐标不变)得到,由得,故在区间上的最小值为.故选A.【点睛】本小题主要考查三角函数图像变换,考查三角函数值域的求法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、分层抽样.【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样故答案为分层抽样.点睛:本题主要考查简单随机抽样,属于基础题.12、【解析】试题分析:记两个切点为,则由于,因此四边形是正方形,,圆标准方程为,,,于是圆心直线的距离不大于,,解得.考点:直线和圆的位置关系.13、【解析】

作出图形,取的中点,连接,证明平面,可知点平面的距离等于点到平面的距离,然后利用等体积法计算出点到平面的距离,即为所求.【详解】如下图所示,取的中点,连接,在正方体中,且,、分别为、的中点,且,所以,四边形为平行四边形,且,又,,平面,平面,平面,则点平面的距离等于点到平面的距离,的面积为,在正方体中,平面,且平面,,易知三棱锥的体积为.的面积为.设点到平面的距离为,则,.故答案为:.【点睛】本题考查点到平面的距离的求法,是中档题,解题时要认真审题,注意等体积法的合理运用.14、.【解析】

设等差数列的公差为,根据题中条件建立、的方程组,求出、的值,即可求出的值.【详解】设等差数列的公差为,所以,解得,因此,,故答案为:.【点睛】本题考查等差数列的项的计算,常利用首项和公差建立方程组,结合通项公式以及求和公式进行计算,考查方程思想,属于基础题.15、【解析】

实数满足表示点在直线上,可以看作点到原点的距离,最小值是原点到直线的距离,根据点到直线的距离公式求解.【详解】因为实数满足=1所以表示直线上点到原点的距离,故的最小值为原点到直线的距离,即,故的最小值为1.【点睛】本题考查点到点,点到直线的距离公式,此题的关键在于的最小值所表示的几何意义的识别.16、51【解析】110011(2)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)利用等比数列的性质结合已知条件解得首项和公比,由此得通项公式;(2)由(1)得,再利用等差数列的求和公式进行解答即可.【详解】(1)由题意,得,又,所以,,或,,由是递增的等比数列,得,所以,,且,∴,即;(2)由(1)得,得,所以数列是以1为首项,以2为公差的等差数列,所以.【点睛】本题考查了等差数列与等比数列的通项公式,以及等差数列的其前n项和公式的应用,考查了推理能力与计算能力,属于基础题.18、(1);(2)【解析】

(1)边上的高所在直线方程斜率与边所在直线的方程斜率之积为-1,可求出高所在直线的斜率,代入即可求出高所在直线的方程。(2)设圆的一般方程为,代入即可求得圆的方程。【详解】(1)因为所在直线的斜率为,所以边上的高所在直线的斜率为所以边上的高所在直线的方程为,即(2)设所求圆的方程为因为在所求的圆上,故有所以所求圆的方程为【点睛】(1)求直线方程一般通过直线点斜式方程求解,即知道点和斜率。(2)圆的一般方程为,三个未知数三个点代入即可。19、(1),(2)【解析】

(1)由题意利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得和的值,可得的值(2)由题意利用二倍角公式,求得原式子的值.【详解】(1)∵已知,,,∴则(2)【点睛】本题主要考查同角三角函数的基本关系,两角和差的三角公式、二倍角公式的应用,以及三角函数在各个象限中的符号,属于基础题.20、(1)(2)【解析】

(1)利用三角函数的诱导公式即可求解.(2)利用诱导公式可得,再利用同角三角函数的基本关系即可求解.【详解】(1)由题意得.(2)∵,∴.又为第二象限角,∴,∴.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论