版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年湖南省怀化市高一下数学期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是椭圆与双曲线的公共焦点,P是它们的一个公共点,且,线段的垂直平分线过,若椭圆的离心率为,双曲线的离心率为,则的最小值为()A. B.3 C.6 D.2.已知数列满足,,则数列的前5项和()A.15 B.28 C.45 D.663.已知圆O1:x2+y2=1与圆O2:(x﹣3)2+(x+4)2=16,则圆O1与圆O2的位置关系为()A.外切 B.内切 C.相交 D.相离4.已知表示三条不同的直线,表示两个不同的平面,下列说法中正确的是()A.若,则 B.若,则C.若,则 D.若,则5.如图所示,AB是半圆O的直径,VA垂直于半圆O所在的平面,点C是圆周上不同于A,B的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是()A.MN//AB B.平面VAC⊥平面VBCC.MN与BC所成的角为45° D.OC⊥平面VAC6.在平行四边形中,,若点满足且,则A.10 B.25 C.12 D.157.已知向量,,则向量在向量方向上的投影为()A. B. C.-1 D.18.已知,,下列不等式成立的是()A. B.C. D.9.若平面∥平面,直线∥平面,则直线与平面的关系为()A.∥ B. C.∥或 D.10.已知,表示两条不同的直线,表示平面,则下列说法正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则二、填空题:本大题共6小题,每小题5分,共30分。11.已知是第二象限角,且,且______.12.正方体中,异面直线和所成角的余弦值是________.13.已知正四棱锥的底面边长为,高为,则该四棱锥的侧面积是______________14.若,且,则的最小值为_______.15.已知数列满足,若,则的所有可能值的和为______;16.若直线l1:y=kx+1与直线l2关于点(2,3)对称,则直线l2恒过定点_____,l1与l2的距离的最大值是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线l经过点,并且其倾斜角等于直线的倾斜角的2倍.求直线l的方程.18.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如表所示:零件的个数个2345加工的时间2.5344.51求出y关于x的线性回归方程;2试预测加工10个零件需要多少时间?19.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求f(x)的单调递增区间.20.已知.(1)当时,求数列前n项和;(用和n表示);(2)求.21.同时抛掷两枚骰子,并记下二者向上的点数,求:二者点数相同的概率;两数之积为奇数的概率;二者的数字之和不超过5的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
利用椭圆和双曲线的性质,用椭圆双曲线的焦距长轴长表示,再利用均值不等式得到答案.【详解】设椭圆长轴,双曲线实轴,由题意可知:,又,,两式相减,可得:,,.,,当且仅当时等立,的最小值为6,故选:C.【点睛】本题考查了椭圆双曲线的性质,用椭圆双曲线的焦距长轴长表示是解题的关键,意在考查学生的计算能力.2、C【解析】
根据可知数列为等差数列,再根据等差数列的求和性质求解即可.【详解】因为,故数列是以4为公差,首项的等差数列.故.故选:C【点睛】本题主要考查了等差数列的判定与等差数列求和的性质与计算,属于基础题.3、A【解析】
先求出两个圆的圆心和半径,再根据它们的圆心距等于半径之和,可得两圆相外切.【详解】圆的圆心为,半径等于1,圆的圆心为,半径等于4,它们的圆心距等于,等于半径之和,两个圆相外切.故选A.【点睛】判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.4、D【解析】
利用线面平行、线面垂直的判定定理与性质依次对选项进行判断,即可得到答案.【详解】对于A,当时,则与不平行,故A不正确;对于B,直线与平面平行,则直线与平面内的直线有两种关系:平行或异面,故B不正确;对于C,若,则与不垂直,故C不正确;对于D,若两条直线垂直于同一个平面,则这两条直线平行,故D正确;故答案选D【点睛】本题考查空间中直线与直线、直线与平面位置关系相关定理的应用,属于中档题.5、B【解析】
对每一个选项逐一分析判断得解.【详解】A.∵M,N分别为VA,VC的中点,∴MN//AC,又AC⊥BC,∴MN与BC所成的角为90°,故C不正确;∵MN//AC,AC∩AB=A,∴MN//AB不成立,故A不正确.B.∵AB是⊙O的直径,点C是圆周上不同于A,B的任意一点,∴AC⊥BC,∵VA垂直⊙O所在的平面,BC⊂⊙O所在的平面,∴VA⊥BC,又AC∩VA=A,∴BC⊥平面VAC,又BC⊂平面VBC,∴平面VAC⊥平面VBC,故B正确;C.∵AB是⊙O的直径,点C是圆周上不同于A,B的任意一点,∴AC⊥BC,又A、B、C、O共面,∴OC与AC不垂直,∴OC⊥平面VAC不成立,故B不正确;∵M,N分别为VA,VC的中点,∴MN//AC,又AC⊥BC,∴MN与BC所成的角为90°,故C不正确;D.∵AB是⊙O的直径,点C是圆周上不同于A,B的任意一点,∴AC⊥BC,又A、B、C、O共面,∴OC与AC不垂直,∴OC⊥平面VAC不成立,故D不正确.故选B.【点睛】本题主要考查空间位置关系的证明,考查异面直线所成的角的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.6、C【解析】
先由题意,用,表示出,再由题中条件,根据向量数量积的运算,即可求出结果.【详解】因为点满足,所以,则故选C.【点睛】本题主要考查向量数量积的运算,熟记平面向量基本定理以及数量积的运算法则即可,属于常考题型.7、A【解析】
根据投影的定义和向量的数量积求解即可.【详解】解:∵,,∴向量在向量方向上的投影,故选:A.【点睛】本题主要考查向量的数量积的定义及其坐标运算,属于基础题.8、A【解析】
由作差法可判断出A、B选项中不等式的正误;由对数换底公式以及对数函数的单调性可判断出C选项中不等式的正误;利用指数函数的单调性可判断出D选项中不等式的正误.【详解】对于A选项中的不等式,,,,,,,,A选项正确;对于B选项中的不等式,,,,,,,B选项错误;对于C选项中的不等式,,,,,,,即,C选项错误;对于D选项中的不等式,,函数是递减函数,又,所以,D选项错误.故选A.【点睛】本题考查不等式正误的判断,常见的比较大小的方法有:(1)比较法;(2)中间值法;(3)函数单调性法;(4)不等式的性质.在比较大小时,可以结合不等式的结构选择合适的方法来比较,考查推理能力,属于中等题.9、C【解析】
利用空间几何体,发挥直观想象,易得直线与平面的位置关系.【详解】设平面为长方体的上底面,平面为长方体的下底面,因为直线∥平面,所以直线通过平移后,可能与平面平行,也可能平移到平面内,所以∥或.【点睛】空间中点、线、面位置关系问题,常可以借助长方体进行研究,考查直观想象能力.10、A【解析】
根据线面垂直的判定与性质、线面平行的判定与性质依次判断各个选项可得结果.【详解】选项:由线面垂直的性质定理可知正确;选项:由线面垂直判定定理知,需垂直于内两条相交直线才能说明,错误;选项:若,则平行关系不成立,错误;选项:的位置关系可能是平行或异面,错误.故选:【点睛】本题考查空间中线面平行与垂直相关命题的辨析,关键是能够熟练掌握空间中直线与平面位置关系的判定与性质定理.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用同角三角函数的基本关系求出,然后利用诱导公式可求出的值.【详解】是第二象限角,则,由诱导公式可得.故答案为:.【点睛】本题考查利用同角三角函数的基本关系和诱导公式求值,考查计算能力,属于基础题.12、【解析】
由,可得异面直线和所成的角,利用直角三角形的性质可得结果.【详解】因为,所以异面直线和所成角,设正方体的棱长为,则直角三角形中,,,故答案为.【点睛】本题主要考查异面直线所成的角,属于中档题题.求异面直线所成的角的角,先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.13、【解析】四棱锥的侧面积是14、【解析】
将变换为,展开利用均值不等式得到答案.【详解】若,且,则时等号成立.故答案为【点睛】本题考查了均值不等式,“1”的代换是解题的关键.15、36【解析】
根据条件得到的递推关系,从而判断出的类型求解出可能的通项公式,即可计算出的所有可能值,并完成求和.【详解】因为,所以或,当时,是等差数列,,所以;当时,是等比数列,,所以,所以的所有可能值之和为:.故答案为:.【点睛】本题考查等差和等比数列的判断以及求数列中项的值,难度一般.已知数列满足(为常数),则是公差为的等差数列;已知数列满足,则是公比为的等比数列.16、(4,5)4.【解析】
根据所过定点与所过定点关于对称可得,与的距离的最大值就是两定点之间的距离.【详解】∵直线:经过定点,又两直线关于点对称,则两直线经过的定点也关于点对称∴直线恒过定点,∴与的距离的最大值就是两定点之间的距离,即为.故答案为:,.【点睛】本题考查了过两条直线交点的直线系方程,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】
求出直线的倾斜角,可得所求直线的倾斜角,从而可得斜率,再利用点斜式可得结果.【详解】因为直线的斜率为,所以其倾斜角为30°,所以,所求直线的倾斜角为60°故所求直线的斜率为,又所求直线经过点,所以其方程为,即,故答案为:.【点睛】本题主要考查直线的斜率与倾斜角,考查了直线点斜式方程的应用,意在考查对基础知识的掌握情况,属于基础题.18、(1);(2)小时【解析】
(1)由已知数据求得与的值,则线性回归方程可求;(2)在(1)中求得的回归方程中,取求得值即可.【详解】(1)由表中数据得:,,,,,,.(2)将代入回归直线方程,(小时).预测加工10个零件需要小时.【点睛】本题考查了回归分析,解答此类问题的关键是利用公式计算,计算要细心.19、(Ⅰ)(Ⅱ)().【解析】试题分析:(Ⅰ)运用两角和的正弦公式对f(x)化简整理,由周期公式求ω的值;(Ⅱ)根据函数y=sinx的单调递增区间对应求解即可.试题解析:(Ⅰ)因为,所以的最小正周期.依题意,,解得.(Ⅱ)由(Ⅰ)知.函数的单调递增区间为().由,得.所以的单调递增区间为().【考点】两角和的正弦公式、周期公式、三角函数的单调性.【名师点睛】三角函数的单调性:1.三角函数单调区间的确定,一般先将函数式化为基本三角函数标准式,然后通过同解变形或利用数形结合方法求解.关于复合函数的单调性的求法;2.利用三角函数的单调性比较两个同名三角函数值的大小,必须先看两角是否同属于这一函数的同一单调区间内,不属于的,可先化至同一单调区间内.若不是同名三角函数,则应考虑化为同名三角函数或用差值法(例如与0比较,与1比较等)求解.20、(1)时,时,;(2);【解析】
(1)当时,求出,再利用错位相减法,求出的前项和;(2)求出的表达式,对,的大小进行分类讨论,从而求出数列的极限.【详解】(1)当时,可得,当时,得到,所以,当时,所以,两边同乘得上式减去下式得,所以所以综上所述,时,;时,.(2)由(1)可知当时,则;当时,则若,若,所以综上所述.【点睛】本题考查错位相减法求数列的和,数列的极限,涉及分类讨论的思想,属于中档题.21、(1)(2)(3)【解析】
把两个骰子分别记为红色和黑色,则问题中含有基本事件个数,记事件A表示“二者点数相同”,利用列举法求出事件A中包含6个基本事件,由此能求出二者点数相同的概率.记事件B表示“两数之积为奇数”,利用列举法求出事件B中含有9个基本事件,由此能求出两数之积为奇数的概率.记事件C表示“二者的数字之和不超过5”,利用列举法求出事
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度技术开发合作合同违约金计算及支付方式3篇
- 2024年度地产项目法律服务合同
- 2024年定制版水电工程分包合同版B版
- 2024学校合同协议
- 2024年度商业广告代理合同
- 2024年家装水电工程进度承包合同
- 2024年度技术开发合同标的研发内容
- 2024年度石子供应及采购合同3篇
- 2024专用版装修材料购买合同版B版
- 2024版工地食堂外包运营合同
- 智联招聘国企笔试题库
- 2024国家开放大学电大《药理学》机考终结性5套真题题库及答案2-百度文
- 双方合作保证金协议
- 宪法宣传主题班会(主题班会)
- 2024年九年级化学上册 第6单元 碳和碳的氧化物教案 (新版)新人教版
- 金相试题完整版本
- 主播合作合同解约函
- 药品经营与管理职业生涯规划书
- 全新劳动合同到期通知
- 2024年太原武宿机场航空产业集团招聘笔试冲刺题(带答案解析)
- 2024年事业单位招聘考试时事政治考试题库附答案(完整版)
评论
0/150
提交评论