2023-2024学年安徽省滁州市来安中学数学高一下期末综合测试模拟试题含解析_第1页
2023-2024学年安徽省滁州市来安中学数学高一下期末综合测试模拟试题含解析_第2页
2023-2024学年安徽省滁州市来安中学数学高一下期末综合测试模拟试题含解析_第3页
2023-2024学年安徽省滁州市来安中学数学高一下期末综合测试模拟试题含解析_第4页
2023-2024学年安徽省滁州市来安中学数学高一下期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年安徽省滁州市来安中学数学高一下期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在平行四边形ABCD中,,,E是CD的中点,则()A.2 B.-3 C.4 D.62.下图来自古希腊数学家希波克拉底所研究的平面几何图形.此图由两个圆构成,O为大圆圆心,线段AB为小圆直径.△AOB的三边所围成的区域记为I,黑色月牙部分记为Ⅱ,两小月牙之和(斜线部分)部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A. B. C. D.3.如果直线与平面不垂直,那么在平面内()A.不存在与垂直的直线 B.存在一条与垂直的直线C.存在无数条与垂直的直线 D.任意一条都与垂直4.向正方形ABCD内任投一点P,则“的面积大于正方形ABCD面积的”的概率是()A. B. C. D.5.已知两点,,若点是圆上的动点,则△面积的最小值是A. B.6 C.8 D.6.已知两条直线m,n,两个平面α,β,下列命题正确是()A.m∥n,m∥α⇒n∥α B.α∥β,m⊂α,n⊂β⇒m∥nC.α⊥β,m⊂α,n⊂β⇒m⊥n D.α∥β,m∥n,m⊥α⇒n⊥β7.如图,正方形中,是的中点,若,则()A. B. C. D.8.在三棱锥中,平面,,,点M为内切圆的圆心,若,则三棱锥的外接球的表面积为()A. B. C. D.9.已知与之间的几组数据如下表则与的线性回归方程必过()A.点 B.点C.点 D.点10.已知集合,集合,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知是奇函数,且,则_______.12.已知函数,则______.13.已知向量a=(2,-4),b=(-3,-4),则向量a与14.把函数的图象向左平移个单位长度,所得图象正好关于原点对称,则的最小值为________.15.由正整数组成的数列,分别为递增的等差数列、等比数列,,记,若存在正整数()满足,,则__________.16.若满足约束条件,则的最小值为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列为等差数列,,,数列为等比数列,,公比.(1)求数列、的通项公式;(2)求数列的前n项和.18.如图所示,经过村庄有两条夹角为的公路,根据规划要在两条公路之间的区域内修建一工厂,分别在两条公路边上建两个仓库(异于村庄),要求(单位:千米),记.(1)将用含的关系式表示出来;(2)如何设计(即为多长时),使得工厂产生的噪声对居民影响最小(即工厂与村庄的距离最大)?19.习主席说:“绿水青山就是金山银山”.某地相应号召,投入资金进行生态环境建设,并以此发展旅游产业,根据规划,2018年投入1000万元,以后每年投入将比上一年减少,本年度当地旅游业收入估计为500万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上一年增加.(1)设年内(2018年为第一年)总投入为万元,旅游业总收入为万元,写出、的表达式;(2)至少到哪一年,旅游业的总收入才能超过总投入.(参考数据:,,)20.如图,四棱锥中,底面为矩形,面,为的中点.(1)证明:平面;(2)设,,三棱锥的体积,求A到平面PBC的距离.21.如图,在长方体中,,点为的中点.(1)求证:直线平面;(2)求证:平面平面;(3)求直线与平面的夹角.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由平面向量的线性运算可得,再结合向量的数量积运算即可得解.【详解】解:由,,所以,,,则,故选:A.【点睛】本题考查了平面向量的线性运算,重点考查了向量的数量积运算,属中档题.2、D【解析】

设OA=1,则AB,分别求出三个区域的面积,由测度比是面积比得答案.【详解】设OA=1,则AB,,以AB中点为圆心的半圆的面积为,以O为圆心的大圆面积的四分之一为,以AB为弦的大圆的劣弧所对弓形的面积为π﹣1,黑色月牙部分的面积为π﹣(π﹣1)=1,图Ⅲ部分的面积为π﹣1.设整个图形的面积为S,则p1,p1,p3.∴p1=p1>p3,故选D.【点睛】本题考查几何概型概率的求法,考查数形结合的解题思想方法,正确求出各部分面积是关键,是中档题.3、C【解析】

因为直线l与平面不垂直,必然会有一条直线与其垂直,而所有与该直线平行直线也与其垂直,因此选C4、C【解析】

由题意,求出满足题意的点所在区域的面积,利用面积比求概率.【详解】由题意,设正方形的边长为1,则正方形的面积为1,要使的面积大于正方形面积的,需要到的距离大于,即点所在区域面积为,由几何概型得,的面积大于正方形面积的的概率为.故选:C.【点睛】本题考查几何概型的概率求法,解题的关键是明确概率模型,属于基础题.5、A【解析】

求得圆的方程和直线方程以及,利用三角换元假设,利用点到直线距离公式和三角函数知识可求得,代入三角形面积公式可求得结果.【详解】由题意知,圆的方程为:,直线方程为:,即设点到直线的距离:,其中当时,本题正确选项:【点睛】本题考查点到直线距离的最值的求解问题,关键是能够利用三角换元的方式将问题转化为三角函数的最值的求解问题.6、D【解析】

在A中,n∥α或n⊂α;在B中,m与n平行或异面;在C中,m与n相交、平行或异面;在D中,由线面垂直的判定定理得:α∥β,m∥n,m⊥α⇒n⊥β.【详解】由两条直线m,n,两个平面α,β,知:在A中,m∥n,m∥α⇒n∥α或n⊂α,故A错误;在B中,α∥β,m⊂α,n⊂β⇒m与n平行或异面,故B错误;在C中,α⊥β,m⊂α,n⊂β⇒m与n相交、平行或异面,故C错误;在D中,由线面垂直的判定定理得:α∥β,m∥n,m⊥α⇒n⊥β,故D正确.故选:D.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.7、B【解析】

以为坐标原点建立平面直角坐标系,设正方形边长为,利用平面向量的坐标运算建立有关、的方程组,求出这两个量的值,可得出的值.【详解】以为坐标原点建立平面直角坐标系,设正方形边长为,由此,,故,解得.故选B.【点睛】本题考查平面向量的线性运算,考查平面向量的基底表示,解题时也可以利用坐标法来求解,考查运算求解能力,属于中等题.8、C【解析】

求三棱锥的外接球的表面积即求球的半径,则球心到底面的距离为,根据正切和MA的长求PA,再和MA的长即可通过勾股定理求出球半径R,则表面积.【详解】取BC的中点E,连接AE(图略).因为,所以点M在AE上,因为,,所以,则的面积为,解得,所以.因为,所以.设的外接圆的半径为r,则,解得.因为平面ABC,所以三棱锥的外接球的半径为,故三棱锥P-ABC的外接球的表面积为.【点睛】此题关键点通过题干信息画出图像,平面ABC和底面的内切圆圆心确定球心的位置,根据几何关系求解即可,属于三棱锥求外接球半径基础题目.9、C【解析】

根据线性回归方程必过样本中心点,即可得到结论.【详解】,,8根据线性回归方程必过样本中心点,可得与的线性回归方程必过.故选:C.【点睛】本题考查线性回归方程,解题的关键是利用线性回归方程必过样本中心点,属于基础题.10、D【解析】

先化简集合,再利用交集运算法则求.【详解】,,,故选:D.【点睛】本题考查集合的运算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据奇偶性定义可知,利用可求得,从而得到;利用可求得结果.【详解】为奇函数又即,解得:本题正确结果:【点睛】本题考查根据函数的奇偶性求解函数值的问题,属于基础题.12、【解析】

根据题意令f(x)=,求出x的值,即可得出f﹣1()的值.【详解】令f(x)=+arcsin(2x)=,得arcsin(2x)=﹣,∴2x=﹣,解得x=﹣,∴f﹣1()=﹣.故答案为:﹣.【点睛】本题考查了反函数以及反正弦函数的应用问题,属于基础题.13、5【解析】

先求出a⋅b,再求【详解】由题得a所以向量a与b夹角的余弦值为cosα=故答案为5【点睛】(1)本题主要考查向量的夹角的计算,意在考查学生对该知识的掌握水平和分析推理计算能力.(2)求两个向量的夹角一般有两种方法,方法一:cos<a,b>=a·bab,方法二:设a=(x1,y14、【解析】

根据条件先求出平移后的函数表达式为,令即可得解.【详解】由题意可得平移后的函数表达式为,图象正好关于原点对称,即,又,的最小值为.故答案为:.【点睛】本题考查了函数图像的平移以及三角函数的图像与性质,属于基础题.15、262【解析】

根据条件列出不等式进行分析,确定公比、、的范围后再综合判断.【详解】设等比数列公比为,等差数列公差为,因为,,所以;又因为,分别为递增的等差数列、等比数列,所以且;又时显然不成立,所以,则,即;因为,,所以;因为,所以;由可知:,则,;又,所以,则有根据可解得符合条件的解有:或;当时,,解得不符,当时,解得,符合条件;则.【点睛】本题考查等差等比数列以及数列中项的存在性问题,难度较难.根据存在性将变量的范围尽量缩小,通过不等式确定参变的取值范围,然后再去确定符合的解,一定要注意带回到原题中验证,看是否满足.16、3【解析】

在平面直角坐标系内,画出可行解域,平行移动直线,在可行解域内,找到直线在纵轴上截距最小时所经过点的坐标,代入目标函数中,求出目标函数的最小值.【详解】在平面直角坐标系中,约束条件所表示的平面区域如下图所示:当直线经过点时,直线纵轴上截距最小,解方程组,因此点坐标为,所以的最小值为.【点睛】本题考查了线性目标函数最小值问题,正确画出可行解域是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),.(2)【解析】

(1)先求出等差数列的首项和公差,求出等比数列的首项即得数列、的通项公式;(2)利用分组求和求数列的前n项和.【详解】(1)由题得.由题得.(2)由题得,所以数列的前n项和.【点睛】本题主要考查等差等比数列的通项的基本量的计算,考查数列通项的求法和求和,意在考查学生对这些知识的理解掌握水平.18、(1),;(2).【解析】

(1)根据正弦定理,得到,进而可求出结果;(2)由余弦定理,得到,结合题中数据,得到,取最大值时,噪声对居民影响最小,即可得出结果.【详解】(1)因为,在中,由正弦定理可得:,所以,;(2)由题意,由余弦定理可得:,又由(1)可得,所以,当且仅当,即时,取得最大值,工厂产生的噪声对居民影响最小,此时.【点睛】本题主要考查正弦定理与余弦定理的应用,熟记正弦定理与余弦定理即可,属于常考题型.19、(1),;(2)2022年【解析】

(1)根据题意,知每年投入资金和旅游业收入是等比数列,根据等比数列的前n项和公式,即可求解;(2)根据(1)中解析式,列出不等式,令,化简不等式,即可求解.【详解】解:(1)2018年投入为1000万元,第年投入为万元,所以,年内的总投入为.2018年旅游业收入为500万元,第年旅游业收入为万元,所以,年内的旅游业总收入为.(2)设至少经讨年,旅游业的总收入才能超讨总投入,由此得,即,令,代入上式得,解得或(舍去),即,不等式两边取常用对数,,即.∴∴至少到2022年,旅游业的总收入才能超过总投入.【点睛】本题考查等比数列求和公式,转化法解指数不等式,考查数学建模思想方法,考查计算能力,属于中等题型.20、(1)证明见解析(2)到平面的距离为【解析】

试题分析:(1)连结BD、AC相交于O,连结OE,则PB∥OE,由此能证明PB∥平面ACE.(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出A到平面PBD的距离试题解析:(1)设BD交AC于点O,连结EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB又EO平面AEC,PB平面AEC所以PB∥平面AEC.(2)由,可得.作交于.由题设易知,所以故,又所以到平面的距离为法2:等体积法由,可得.由题设易知,得BC假设到平面的距离为d,又因为PB=所以又因为(或),,所以考点:线面平行的判定及点到面的距离21、(1)见证明;(2)见证明;(3)【解析】

(1)连接,交于,则为中点,连接OP,可证明,从而可证明直线平面;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论