版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省上高县二中2023-2024学年高一数学第二学期期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设等比数列的前项和为,若,则()A. B.2 C. D.2.设a>0,b>0,若是和的等比中项,则的最小值为()A.6 B. C.8 D.93.下列函数中同时具有性质:①最小正周期是,②图象关于点对称,③在上为减函数的是()A. B.C. D.4.一个不透明袋中装有大小、质地完成相同的四个球,四个球上分别标有数字2,3,4,6,现从中随机选取三个球,则所选三个球上的数字能构成等差数列(如:、、成等差数列,满足)的概率是()A. B. C. D.5.不等式的解集为()A. B. C. D.6.在中,角A,B,C的对边分别为a,b,c,若,则角=()A. B. C. D.7.l:与两坐标轴所围成的三角形的面积为A.6 B.1 C. D.38.两数与的等比中项是()A.1 B.-1 C.±1 D.9.已知下列各命题:①两两相交且不共点的三条直线确定一个平面:②若真线不平行于平面,则直线与平面有公共点:③若两个平面垂直,则一个平面内的已知直线必垂直于另一个平面的无数条直线:④若两个二面角的两个面分别对应垂直,则这两个二面角相等或互补.则其中正确的命题共有()个A. B. C. D.10.若将函数的图象向右平移个单位,所得图象关于轴对称,则的最小值是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.涡阳一中某班对第二次质量检测成绩进行分析,利用随机数表法抽取个样本时,先将个同学按、、、、进行编号,然后从随机数表第行第列的数开始向右读(注:如表为随机数表的第行和第行),则选出的第个个体是______.12.设是公差不为0的等差数列,且成等比数列,则的前10项和________.13.设直线与圆C:x2+y2-2ay-2=0相交于A,B两点,若,则圆C的面积为________14.已知扇形的面积为,圆心角为,则该扇形半径为__________.15.已知,是第三象限角,则.16.已知等差数列中,,,则该等差数列的公差的值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.定义:对于任意,满足条件且(是与无关的常数)的无穷数列称为数列.(1)若,证明:数列是数列;(2)设数列的通项为,且数列是数列,求常数的取值范围;(3)设数列,若数列是数列,求的取值范围.18.如图,是正方形,是正方形的中心,底面是的中点.(1)求证:平面;(2)若,求三棱锥的体积.19.已知圆圆心坐标为点为坐标原点,轴、轴被圆截得的弦分别为、.(1)证明:的面积为定值;(2)设直线与圆交于两点,若,求圆的方程.20.已知公差不为零的等差数列{an}和等比数列{bn}满足:a1=b1=3,b2=a4,且a1,a4,a13成等比数列.(1)求数列{an}和{bn}的通项公式;(2)令cn=an•bn,求数列{cn}的前n项和Sn.21.已知公差不为零的等差数列中,,且成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据等比数列前项和为带入即可。【详解】当时,不成立。当时,则,选择C【点睛】本题主要考查了等比数列的前项和,,属于基础题。2、D【解析】
试题分析:由题意a>0,b>0,且是和的等比中项,即,则,当且仅当时,即时取等号.考点:重要不等式,等比中项3、C【解析】
根据周期公式排除A选项;根据正弦函数的单调性,排除B选项;将代入函数解析式,排除D选项;根据周期公式,将代入函数解析式,余弦函数的单调性判断C选项正确.【详解】对于A项,,故A错误;对于B项,,,函数在上单调递增,则函数在上单调递增,故B错误;对于C项,;当时,,则其图象关于点对称;当,,函数在区间上单调递减,则函数在区间单调递减,故C正确;对于D项,当时,,故D错误;故选:C【点睛】本题主要考查了求正余弦函数的周期,单调性以及对称性的应用,属于中档题.4、B【解析】
用列举法写出所有基本事件,确定成等差数列含有的基本事件,计数后可得概率.【详解】任取3球,结果有234,236,246,346共4种,其中234,246是成等差数列的2个基本事件,∴所求概率为.故选:B.【点睛】本题考查古典概型,解题时可用列举法列出所有的基本事件.5、A【解析】
因式分解求解即可.【详解】,解得.故选:A【点睛】本题主要考查了二次不等式的求解,属于基础题.6、A【解析】
由正弦定理可解得,利用大边对大角可得范围,从而解得A的值.【详解】,由正弦定理可得:,,由大边对大角可得:,解得:.故选A.【点睛】本题主要考查了正弦定理,大边对大角,正弦函数的图象和性质等知识的应用,解题时要注意分析角的范围.7、D【解析】
先求出直线与坐标轴的交点,再求三角形的面积得解.【详解】当x=0时,y=2,当y=0时,x=3,所以三角形的面积为.故选:D【点睛】本题主要考查直线与坐标轴的交点的坐标的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.8、C【解析】试题分析:设两数的等比中项为,等比中项为-1或1考点:等比中项9、B【解析】
①利用平面的基本性质判断.②利用直线与平面的位置关系判断.③由面面垂直的性质定理判断.④通过举反例来判断.【详解】①两两相交且不共点,形成三个不共线的点,确定一个平面,故正确.②若真线不平行于平面,则直线与平面相交或在平面内,所以有公共点,故正确.③若两个平面垂直,则一个平面内,若垂直交线的直线则垂直另一个平面,垂直另一平面内所有直线,若不垂直与交线,也与另一平面内垂直交线的直线及其平行线垂直,也有无数条,故正确.④若两个二面角的两个面分别对应垂直,则这两个二面角关系不确定,如图:在正方体ABCD-A1B1C1D1中,二面角D-AA1-F与二面角D1-DC-A的两个半平面就是分别对应垂直的,但是这两个二面角既不相等,也不互补.故错误..故选:B【点睛】本题主要考查了点、线、面的位置关系,还考查了推理论证和理解辨析的能力,属于基础题.10、B【解析】
把函数的解析式利用辅助角公式化成余弦型函数解析式形式,然后求出向右平移个单位后函数的解析式,根据题意,利用余弦型函数的性质求解即可.【详解】,该函数求出向右平移个单位后得到新函数的解析式为:,由题意可知:函数的图象关于轴对称,所以有当时,有最小值,最小值为.故选:B【点睛】本题考查了余弦型函数的图象平移,考查了余弦型函数的性质,考查了数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
根据随机数法列出前个个体的编号,即可得出答案.【详解】由随机数法可知,前个个体的编号依次为、、、、、、,因此,第个个体是,故答案为.【点睛】本题考查随机数法读取样本个体编号,读取时要把握两个原则:(1)看样本编号最大数为几位数,读取时就几个数连着一起取;(2)不在编号范围内的号码要去掉,重复的只能取第一次.12、【解析】
利用等差数列的通项公式和等比数列的性质求出公差,由此能求出【详解】因为是公差不为0的等差数列,且成等比数列所以,即解得或(舍)所以故答案为:【点睛】本题考查等差数列前10项和的求法,解题时要认真审题,注意等比数列的性质合理运用.13、【解析】因为圆心坐标与半径分别为,所以圆心到直线的距离,则,解之得,所以圆的面积,应填答案.14、2【解析】
将圆心角化为弧度制,再利用扇形面积得到答案.【详解】圆心角为扇形的面积为故答案为2【点睛】本题考查了扇形的面积公式,属于简单题.15、.【解析】试题分析:根据同角三角函数的基本关系知,,化简整理得①,又因为②,联立方程①②即可解得:,,又因为是第三象限角,所以,故.考点:同角三角函数的基本关系.16、【解析】
根据等差数列的通项公式即可求解【详解】故答案为:【点睛】本题考查等差通项基本量的求解,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3).【解析】
(1)根据题中的新定义代入即可证出.(2)设,,,代入通项解不等式组,使即可求解.(3)首先根据可求时,,当时,,根据题中新定义求出成立,可得,再验证恒成立即可求解.【详解】(1),且,则满足,则数列是数列.综上所述,结论是:数列是数列.(2)设,,则,得,,,则数列的最大值为,则(3),当时,当时,,由,得,当时,恒成立,则要使数列是数列,则的取值范围为.【点睛】本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.18、(1)证明见解析;(2).【解析】
(1)由平面得出,由底面为正方形得出,再利用直线与平面垂直的判定定理可证明平面;(2)由勾股定理计算出,由点为线段的中点得知点到平面的距离等于,并计算出的面积,最后利用锥体的体积公式可计算出三棱锥的体积.【详解】(1)平面,平面,,又为正方形,,又平面,平面,,平面;(2)由题意知:,又,,,点到面的距离为,.【点睛】本题考查直线与平面垂直的判定,考查三棱锥体积的计算,在计算三棱锥的体积时,充分利用题中的线面垂直关系和平面与平面垂直的关系,寻找合适的底面和高来进行计算,考查计算能力与推理能力,属于中等题.19、(1)证明见解析;(2).【解析】
(1)利用几何条件可知,为直角三角形,且圆过原点,所以得知三角形两直角边边长,求得面积;(2)由及原点O在圆上,知OCMN,所以,求出的值,再利用直线与圆的位置关系判断检验,符合题意的解,最后写出圆的方程.【详解】(1)因为轴、轴被圆截得的弦分别为、,所以经过,又为中点,所以,所以,所以的面积为定值.(2)因为直线与圆交于两点,,所以的中垂线经过,且过,所以的方程,所以,所以当时,有圆心,半径,所以圆心到直线的距离为,所以直线与圆交于点两点,故成立;当时,有圆心,半径,所以圆心到直线的距离为,所以直线与圆不相交,故(舍去),综上所述,圆的方程为.【点睛】本题通过直线与圆的有关知识,考查学生直观想象和逻辑推理能力.解题注意几何条件的运用可以简化运算.20、(1)an=2n+1;bn=3n;(2)Sn=n•3n+1.【解析】
(1)利用基本元的思想,结合等差数列、等比数列的通项公式、等比中项的性质列方程,解方程求得的值,从而求得数列的通项公式.(2)利用错位相减求和法求得数列的前项和.【详解】(1)公差d不为零的等差数列{an}和公比为q的等比数列{bn},a1=b1=3,b2=a4,且a1,a4,a13成等比数列,可得3q=3+3d,a1a13=a42,即(3+3d)2=3(3+12d),解得d=2,q=3,可得an=3+2(n﹣1)=2n+1;bn=3n;(2)cn=an•bn=(2n+1)•3n,前n项和Sn=3•3+5•32+7•33+…+(2n+1)•3n,3Sn=3•32+5•33+7•34+…+(2n+1)•3n+1,两式相减可得﹣2Sn=9+2(32+33+…+3n)﹣(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳动仲裁调解协议书7篇
- 商业合伙人的协议书
- 传统民间工艺品-捏面人简介
- (参考模板)三通项目立项报告
- 第三次月考试卷-A4
- 重庆2020-2024年中考英语5年真题回-教师版-专题08 阅读理解之记叙文
- 电能表安06课件讲解
- 2023年抗甲状腺药项目融资计划书
- 国华电力危险化学品安全管理培训课件
- PLC控制技术试题库(附参考答案)
- 李商隐诗歌《锦瑟》课件
- 世界文化遗产-乐山大佛课件
- 2022小学一年级数学活用从不同角度解决问题测试卷(一)含答案
- 博尔赫斯简介课件
- 2021年山东交投矿业有限公司招聘笔试试题及答案解析
- 施工单位资料检查内容
- 大气课设-酸洗废气净化系统
- 学校校庆等大型活动安全应急预案
- 检测公司检验检测工作控制程序
- 高血压病例优秀PPT课件
- 精密电主轴PPT课件
评论
0/150
提交评论