




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届贵州省铜仁伟才学校数学高一下期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.阅读如图的程序框图,运行该程序,则输出的值为()A.3 B.1C.-1 D.02.如图,在四棱锥中,底面,底面为直角梯形,,,则直线与平面所成角的大小为()A. B. C. D.3.下面四个命题:①“直线a∥直线b”的充要条件是“a平行于b所在的平面”;②“直线l⊥平面α内所有直线”的充要条件是“l⊥平面α”;③“直线a、b为异面直线”的必要不充分条件是“直线a、b不相交”;④“平面α∥平面β”的充分不必要条件是“α内存在不共线的三点到β的距离相等”;其中正确命题的序号是()A.①② B.②③ C.③④ D.②④4.的直观图如图所示,其中,则在原图中边的长为()A. B. C.2 D.5.《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为()(结果精确到0.1.参考数据:lg2=0.3010,lg3=0.2.)A.2.6天 B.2.2天 C.2.4天 D.2.8天6.设函数,,其中,.若,且的最小正周期大于,则()A., B.,C., D.,7.在中,角,,的对边分别为,,,若,,,则()A. B. C. D.8.如图,网格纸上小正方形的边长为,粗实线画出的是某多面体的三视图,则此几何体的表面积为()A. B. C. D.9.已知函数在上单调递增,且的图象关于对称.若,则的解集为()A. B.C. D.10.计算()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设,,为三条不同的直线,,为两个不同的平面,下列命题中正确的是______.(1)若,,,则;(2)若,,,则;(3)若,,,,则;(4)若,,,则.12.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.13.已知的一个内角为,并且三边长构成公差为4的等差数列,则的面积为_______________.14.设Sn为数列{an}的前n项和,若Sn=(-1)nan-,n∈N,则a3=________.15.设在的内部,且,的面积与的面积之比为______.16.已知向量,则的单位向量的坐标为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直角梯形中,,,,,,过作,垂足为,分别为的中点,现将沿折叠,使得.(1)求证:(2)在线段上找一点,使得,并说明理由.18.若数列满足:对于,都有(为常数),则称数列是公差为的“隔项等差”数列.(Ⅰ)若,是公差为8的“隔项等差”数列,求的前项之和;(Ⅱ)设数列满足:,对于,都有.①求证:数列为“隔项等差”数列,并求其通项公式;②设数列的前项和为,试研究:是否存在实数,使得成等比数列()?若存在,请求出的值;若不存在,请说明理由.19.如图,在中,角,,的对边分别为,,,且.(1)求的大小;(2)若,为外一点,,,求四边形面积的最大值.20.等差数列中,公差,,.(1)求的通项公式;(2)若,求数列的前项和.21.已知,,,且.(1)若,求的值;(2)设,,若的最大值为,求实数的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
从起始条件、开始执行程序框图,直到终止循环.【详解】,,,,,输出.【点睛】本题是直到型循环,只要满足判断框中的条件,就终止循环,考查读懂简单的程序框图.2、A【解析】
取中点,中点,连接,先证明为所求角,再计算其大小.【详解】取中点,中点,连接.设易知:平面平面易知:四边形为平行四边形平面,即为直线与平面所成角故答案选A【点睛】本题考查了线面夹角,先找出线面夹角是解题的关键.3、B【解析】
逐项分析见详解.【详解】①“a平行于b所在的平面”不能推出“直线a∥直线b”,如:正方体上底面一条对角线平行于下底面,但上底面的一条对角线却不平行于下底面非对应位置的另一条对角线,故错误;②“直线l⊥平面α内所有直线”是“l⊥平面α”的定义,故正确;③“直线a、b不相交”不能推出“直线a、b为异面直线”,这里可能平行;“直线a、b为异面直线”可以推出“直线a、b不相交”,所以是必要不充分条件,故正确;④“α内存在不共线的三点到β的距离相等”不能推出“平面α∥平面β”,这里包含了平面相交的情况,“平面α∥平面β”能推出“α内存在不共线的三点到β的距离相等”,所以是必要不充分条件,故错误.故选B.【点睛】本题考查空间中平行与垂直关系的判断,难度一般.对可以利用判定定理和性质定理直接分析的问题,可直接判断;若无法直接判断的问题可采用作图法或者排除法判断.4、D【解析】
由直观图确定原图形中三角形边的关系及长度,然后计算.【详解】在原图形中,,,∴.故选:D.【点睛】本题考查直观图,考查由直观图还原原平面图形.掌握斜二测画法的规则是解题关键.5、A【解析】
设蒲的长度组成等比数列{an},其a1=3,公比为,其前n项和为An.莞的长度组成等比数列{bn},其b1=1,公比为2,其前n项和为Bn.利用等比数列的前n项和公式及其对数的运算性质即可得出..【详解】设蒲的长度组成等比数列{an},其a1=3,公比为,其前n项和为An.莞的长度组成等比数列{bn},其b1=1,公比为2,其前n项和为Bn.则An,Bn,由题意可得:,化为:2n7,解得2n=3,2n=1(舍去).∴n12.3.∴估计2.3日蒲、莞长度相等,故选:A.【点睛】本题考查了等比数列的通项公式与求和公式在实际中的应用,考查了推理能力与计算能力,属于中档题.6、B【解析】
根据周期以及最值点和平衡位置点先分析的值,然后带入最值点计算的值.【详解】因为,,所以,则,所以,即,故;则,代入可得:且,所以.故选B.【点睛】(1)三角函数图象上,最值点和平衡位置的点之间相差奇数个四分之一周期的长度;(2)计算的值时,注意选用最值点或者非特殊位置点,不要选用平衡位置点(容易多解).7、A【解析】
由余弦定理可直接求出边的长.【详解】由余弦定理可得,,所以.故选A.【点睛】本题考查了余弦定理的运用,考查了计算能力,属于基础题.8、B【解析】
作出多面体的直观图,将各面的面积相加可得出该多面积的表面积.【详解】由三视图得知该几何体的直观图如下图所示:由直观图可知,底面是边长为的正方形,其面积为;侧面是等腰三角形,且底边长,底边上的高为,其面积为,且;侧面是直角三角形,且为直角,,,其面积为,,的面积为;侧面积为等腰三角形,底边长,,底边上的高为,其面积为.因此,该几何体的表面积为,故选:B.【点睛】本题考查几何体的三视图以及几何体表面积的计算,再利用三视图求几何体的表面积时,要将几何体的直观图还原,并判断出各个面的形状,结合图中数据进行计算,考查空间想象能力与计算能力,属于中等题.9、D【解析】
首先根据题意得到的图象关于轴对称,,再根据函数的单调性画出草图,解不等式即可.【详解】因为的图象关于对称,所以的图象关于轴对称,.又因为在上单调递增,所以函数的草图如下:所以或,解得:或.故选:D【点睛】本题主要考查函数的对称性,同时考查了函数的图象平移变换,属于中档题.10、A【解析】
根据对数运算,即可求得答案.【详解】故选:A.【点睛】本题主要考查了对数运算,解题关键是掌握对数运算基础知识,考查了计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、(1)【解析】
利用线线平行的传递性、线面垂直的判定定理判定.【详解】(1),,,则,正确(2)若,,,则,错误(3)若,则不成立,错误(4)若,,,则,错误【点睛】本题主要考查线面垂直的判定定理判定,考查了空间想象能力,属于中档题.12、.【解析】
根据棱锥的结构特点,确定所求的圆柱的高和底面半径.【详解】由题意四棱锥的底面是边长为的正方形,侧棱长均为,借助勾股定理,可知四棱锥的高为,.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,圆柱的底面半径为,一个底面的圆心为四棱锥底面的中心,故圆柱的高为,故圆柱的体积为.【点睛】本题主要考查了圆柱与四棱锥的组合,考查了空间想象力,属于基础题.13、【解析】
试题分析:设三角形的三边长为a-4,b=a,c=a+4,(a<b<c),根据题意可知三边长构成公差为4的等差数列,可知a+c=2b,C=120,,则由余弦定理,c=a+b-2abcosC,,三边长为6,10,14,,b=a+c-2accosB,即(a+c)=a+c-2accosB,cosB=,sinB=可知S==.考点:本试题主要考查了等差数列与解三角形的面积的求解的综合运用.点评:解决该试题的关键是利用余弦定理来求解,以及边角关系的运用,正弦面积公式来求解.巧设变量a-4,a,a+4会简化运算.14、-【解析】当n=3时,S3=a1+a2+a3=-a3-,则a1+a2+2a3=-,当n=4时,S4=a1+a2+a3+a4=a4-,两式相减得a3=-.15、1:3【解析】
记,,可得:为的重心,利用比例关系可得:,,,结合:即可得解.【详解】记,则则为的重心,如下图由三角形面积公式可得:,,又为的重心,所以,所以所以【点睛】本题主要考查了三角形重心的向量结论,还考查了转化能力及三角形面积比例计算,属于难题.16、.【解析】
由结论“与方向相同的单位向量为”可求出的坐标.【详解】,所以,,故答案为.【点睛】本题考查单位向量坐标的计算,考查共线向量的坐标运算,充分利用共线单位向量的结论可简化计算,考查运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】试题分析:(Ⅰ)由已知得:面面;(II)分析可知,点满足时,面BDR⊥面BDC.
理由如下先计算再求得,
,再证面面面.试题解析:(Ⅰ)由已知得:面面
(II)分析可知,点满足时,面BDR⊥面BDC.
理由如下:取中点,连接
容易计算在中∵可知,
∴在中,
又在中,为中点面,
∴面面.18、(Ⅰ)(Ⅱ)①当为偶数时,,当为奇数时,;②【解析】
试题分析:(Ⅰ)由新定义知:前项之和为两等差数列之和,一个是首项为3,公差为8的等差数列前8项和,另一个是首项为17,公差为8的等差数列前7项和,所以前项之和(Ⅱ)①根据新定义知:证明目标为,,相减得,当为奇数时,依次构成首项为a,公差为2的等差数列,,当为偶数时,依次构成首项为2-a,公差为2的等差数列,②先求和:当为偶数时,;当为奇数时,故当时,,,,由,则,解得.试题解析:(Ⅰ)易得数列前项之和(Ⅱ)①()(A)(B)(B)(A)得().所以,为公差为2的“隔项等差”数列.当为偶数时,,当为奇数时,;②当为偶数时,;当为奇数时,.故当时,,,,由,则,解得.所以存在实数,使得成等比数列()考点:新定义,等差数列通项及求和19、(1)(2)【解析】
(1)由余弦定理和诱导公式整理,得到,求出;(2)在中,用余弦定理表示出,判断是等腰直角三角形,再利用三角形面积公式表示出,再利用辅助角公式化简,求出四边形面积的最大值.【详解】(1)在中,由,所以∵,∴,∴,又∵,∴.又∵,∴,即为.(2)在中,,,由余弦定理可得,又∵,∴为等腰直角三角形,∴,∴当时,四边形面积有最大值,最大值为.【点睛】本题主要考查余弦定理解三角形、诱导公式、三角形面积公式和利用三角函数求最值,考查学生的分析转化能力和计算能力,属于中档题.20、(1)(2)【解析】
(1)由和可列出方程组,解出和,即得通项公式;(2)将(1)中所得通项公式代入,列项,用裂项相消法求的前n项和.【详解】解:(1)因为,,所以因为,所以故的通项
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《黄鹤楼记课件佳品》课件
- 《Python程序设计基础》课件 第3、4章 程序控制结构;Python 容器
- 《GB 32459-2015消防应急救援装备 手动破拆工具通 用技术条件》(2025版)深度解析
- 铁路工程安全技术石家庄铁路35课件
- 二手住房交易合同模板
- 电商代运营合作协议范本
- 内蒙古呼和浩特市实验教育集团2025届初三下学期5月月考英语试题试卷含答案
- 沈阳大学《CI原理与实务》2023-2024学年第二学期期末试卷
- 山东第一医科大学《诊断学2(医技)》2023-2024学年第一学期期末试卷
- 台州科技职业学院《国际金融B》2023-2024学年第二学期期末试卷
- 2024上海市招聘社区工作者考试题及参考答案
- 2021年高考物理试卷(江苏)(解析卷)
- 调度室副主任安全生产职责模版(3篇)
- 2025年中电科太力通信科技限公司招聘高频重点提升(共500题)附带答案详解
- 《设备房管理标准》课件
- 2025年内蒙古呼伦贝尔农垦拉布大林上库力三河苏沁农牧场有限公司招聘笔试参考题库附带答案详解
- 呼吸机故障应急演练
- 轻钢结构大棚施工组织设计方案
- 垃圾分类垃圾箱绿色公益宣传
- 经腋窝无充气腔镜甲状腺手术
- 145完整版本.现代安全管理的六大管理体系
评论
0/150
提交评论