版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省大理、丽江、怒江高一下数学期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,则是()A.等腰直角三角形 B.等腰或直角三角形 C.等腰三角形 D.直角三角形2.若,则下列不等式中不正确的是().A. B. C. D.3.两个正实数满足,则满足,恒成立的取值范围()A. B. C. D.4.如图是正方体的展开图,则在这个正方体中:①与平行;②与是异面直线;③与成60°角;④与垂直.以上四个命题中,正确命题的序号是A.①②③ B.②④ C.③④ D.②③④5.已知等比数列中,各项都是正数,且成等差数列,则等于()A. B. C. D.6.若,则下列不等式中不正确的是()A. B. C. D.7.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是()A. B. C. D.8.化简的结果是()A. B. C. D.9.已知数列2008,2009,1,-2008,-2009…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2019项之和S2019A.1 B.2010 C.4018 D.401710.若直线与曲线有公共点,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则的值为_______.12.若采用系统抽样的方法从420人中抽取21人做问卷调查,为此将他们随机编号为1,2,…,420,则抽取的21人中,编号在区间[241,360]内的人数是______13.若则的最小值是__________.14.已知向量、满足,,且,则与的夹角为________.15.方程的解为_________.16.函数的零点个数为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(其中)的图象如图所示:(1)求函数的解析式及其对称轴的方程;(2)当时,方程有两个不等的实根,求实数的取值范围,并求此时的值.18.经观测,某公路段在某时段内的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间有函数关系:.(1)在该时段内,当汽车的平均速度为多少时车流量最大?最大车流量为多少?(精确到0.01)(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?19.设Sn为数列{an}的前n项和,已知a1=3,Sn=1Sn﹣1+n(n≥1)(1)求出a1,a3的值,并证明:数列{an+1}为等比数列;(1)设bn=log1(a3n+1),数列{}的前n项和为Tn,求证:1≤18Tn<1.20.设函数f(x)=x(1)当a=2时,函数f(x)的图像经过点(1,a+1),试求m的值,并写出(不必证明)f(x)的单调递减区间;(2)设a=-1,h(x)+x⋅f(x)=0,g(x)=2cos(x-π3),若对于任意的s∈[1,2],总存在t∈[0,π]21.如图,某快递小哥从地出发,沿小路以平均速度为20公里小时送快件到处,已知公里,,是等腰三角形,.(1)试问,快递小哥能否在50分钟内将快件送到处?(2)快递小哥出发15分钟后,快递公司发现快件有重大问题,由于通讯不畅,公司只能派车沿大路追赶,若汽车的平均速度为60公里小时,问,汽车能否先到达处?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
先由可得,然后利用与三角函数的和差公式可推出,从而得到是直角三角形【详解】因为,所以所以因为所以即所以所以因为,所以因为,所以,即是直角三角形故选:D【点睛】要判断三角形的形状,应围绕三角形的边角关系进行思考,主要有以下两条途径:①角化边:把已知条件转化为只含边的关系,通过因式分解、配方等得到边的对应关系,从而判断三角形形状,②边化角:把已知条件转化为内角的三角函数间的关系,通过三角恒等变换,得出内角的关系,从而判断三角形的形状.2、D【解析】
先判断出的大小关系,然后根据不等式的性质以及基本不等式逐项判断.【详解】由,得,,,故D不正确,C正确;,,,故A正确;,,,取等号时,故B正确,故选D.【点睛】本题考查利用不等式性质以及基本不等式判断不等式是否成立,难度一般.注意使用基本不等式计算最值时,取等号的条件一定要记得添加.3、B【解析】
由基本不等式和“1”的代换,可得的最小值,再由不等式恒成立思想可得小于等于的最小值,解不等式即得m的范围。【详解】由,,可得,当且仅当上式取得等号,若恒成立,则有,解得.故选:B【点睛】本题考查利用基本不等式求恒成立问题中的参数取值范围,是常考题型。4、C【解析】
将正方体的展开图还原为正方体后,即可得到所求正确结论.【详解】将正方体的展开图还原为正方体ABCD﹣EFMN后,可得AF,CN异面;BM,AN平行;连接AN,NF,可得∠FAN为AF,BM所成角,且为60°;BN⊥DE,DE⊥AB可得DE⊥平面ABN,可得DE⊥BN,可得③④正确,故选C.【点睛】本题考查展开图与空间几何体的关系,考查空间线线的位置关系的判断,属于基础题.5、C【解析】
由条件可得a3=a1+2a2,即a1q2=a1+2a1q,解得q=1.代入所求运算求得结果.【详解】∵等比数列{an}中,各项都是正数,且a1,a3,2a2成等差数列,故公比q不等于1.∴a3=a1+2a2,即a1q2=a1+2a1q,解得q=1.∴3+2,故选:C.【点睛】本题主要考查等差中项的性质,等比数列的通项公式,考查了整体化的运算技巧,属于基础题.6、C【解析】
,可得,则根据不等式的性质逐一分析选项,A:,,所以成立;B:,则,根据基本不等式以及等号成立的条件则可判断;C:且,根据可乘性可知结果;D:,根据乘方性可判断结果.【详解】A:由题意,不等式,可得,则,,所以成立,所以A是正确的;B:由,则,所以,因为,所以等号不成立,所以成立,所以B是正确的;C:由且,根据不等式的性质,可得,所以C不正确;D:由,可得,所以D是正确的,故选:C.【点睛】本题考查不等式的性质,不等式等号成立的条件,熟记不等式的性质是解题的关键,属于基础题.7、C【解析】
如图,取中点,则平面,故,因此与平面所成角即为,设,则,,即,故,故选C.8、A【解析】
根据平面向量加法及数乘的几何意义,即可求解,得到答案.【详解】根据平面向量加法及数乘的几何意义,可得,故选A.【点睛】本题主要考查了平面向量的加法法则的应用,其中解答中熟记平面向量的加法法则是解答的关键,着重考查了推理与运算能力,属于基础题.9、C【解析】
计算数列的前几项,观察数列是一个周期为6的数列,计算得到答案.【详解】从第二项起,每一项都等于它的前后两项之和计算数列前几项得:2008,2009,1,-2008,-2009,-1,2008,2009,1,-2008…观察知:数列是一个周期为6的数列每个周期和为0S故答案为C【点睛】本题考查了数列的前N项和,观察数列的周期是解题的关键.10、D【解析】
将本题转化为直线与半圆的交点问题,数形结合,求出的取值范围【详解】将曲线的方程化简为即表示以为圆心,以2为半径的一个半圆,如图所示:由圆心到直线的距离等于半径2,可得:解得或结合图象可得故选D【点睛】本题主要考查了直线与圆的位置关系,考查了转化能力,在解题时运用点到直线的距离公式来计算,数形结合求出结果,本题属于中档题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
把已知等式展开利用二倍角余弦公式及两角和的余弦公式,整理后两边平方求解.【详解】解:由,得,,则,两边平方得:,即.故答案为.【点睛】本题考查三角函数的化简求值,考查倍角公式的应用,是基础题.12、6【解析】试题分析:由题意得,编号为,由得共6个.考点:系统抽样13、【解析】
根据对数相等得到,利用基本不等式求解的最小值得到所求结果.【详解】则,即由题意知,则,则当且仅当,即时取等号本题正确结果:【点睛】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式.14、【解析】
直接应用数量积的运算,求出与的夹角.【详解】设向量、的夹角为;∵,∴,∵,∴.故答案为:.【点睛】本题考查向量的夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.15、【解析】
根据特殊角的三角函数及正切函数的周期为kπ,即可得到原方程的解.【详解】则故答案为:【点睛】此题考查学生掌握正切函数的图象及周期性,是一道基础题.16、3【解析】
运用三角函数的诱导公式先将函数化简,再在同一直角坐标系中做出两支函数的图像,观察其交点的个数即得解.【详解】由三角函数的诱导公式得,所以令,求零点的个数转化求方程根的个数,因此在同一直角坐标系分别做出和的图象,观察两支图象的交点的个数为个,注意在做的图像时当时,,故得解.【点睛】本题考查三角函数的有界性和余弦函数与对数函数的交点情况,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2),.【解析】
(1)根据图像得A=2,利用,求ω值,再利用时取到最大值可求φ,从而得到函数解析式,进而求得对称轴方程;(2)由得,方程f(x)=2a﹣3有两个不等实根转为f(x)的图象与直线y=2a﹣3有两个不同的交点,从而可求得a的取值范围,利用图像的性质可得的值.【详解】(1)由图知,,解得ω=2,f(x)=2sin(2x+φ),当时,函数取得最大值,可得,即,,解得,又所以,故,令则,所以的对称轴方程为;(2),所以方程有两个不等实根时,的图象与直线有两个不同的交点,可得,当时,,有,故.【点睛】本题考查由y=Asin(ωx+φ)的部分图象确定函数解析式,考查函数y=Asin(ωx+φ)的图象及性质的综合应用,属于中档题.18、(1)v=40千米/小时,车流量最大,最大值为11.08千辆/小时(2)汽车的平均速度应控制在25≤v≤64这个范围内【解析】
(1)将已知函数化简,利用基本不等式求车流量y最大值;
(2)要使该时段内车流量至少为10千辆/小时,即使,解之即可得汽车的平均速度的控制范围.【详解】解:(1)=≤=≈11.08,当v=,即v=40千米/小时,车流量最大,最大值为11.08千辆/小时.(2)据题意有:,化简得,即,所以,所以汽车的平均速度应控制在这个范围内.【点睛】本题以已知函数关系式为载体,考查基本不等式的使用,考查解不等式,属于基础题.19、(1)见解析;(1)见解析【解析】
(1)可令求得的值;再由数列的递推式,作差可得,可得数列为首项为1,公比为1的等比数列;(1)由(1)求得,,再由数列的裂项相消求和,可得,再由不等式的性质即可得证.【详解】(1)当时,,即,∴,当时,,即,∴,∵,∴,,∴,∴,又∵,,∴,∴,∴数列是首项为,公比为1的等比数列.(1)由(1)可知,所以,所以,,,,所以,所以,即.【点睛】本题主要考查了数列的递推式的运用,考查等比数列的定义和通项公式、求和公式的运用,考查数列的裂项相消求和,化简运算能力,属于中档题.20、(1)递减区间为[-2,0)和(0,2【解析】
(1)将点(1,3)代入函数f(x)即可求出m,根据函数的解析式写出单调递减区间即可(2)当a=-1时,写出函数h(x),由题意知h(s)的值域是g(t)值域的子集,即可求出.【详解】(1)因为函数f(x)的图像经过点(1,a+1),且a=2所以f(1)=1+m+2=3,解得m=0.∴ ∴f(x)的单调递减区间为[-2,0)(2)当a=-1时,f(x)=x-1∴ ∵g(x)=2cos∴ t∈[0,π]时,g(t)∈[-1,2]由对于任意的s∈[1,2],总存在t∈[0,π],使得h(s)=g(t)知:h(s)的值域是g(t)值域的子集.因为h(x)=-x2-mx+1①当-m2≤1只需满足h(1)=-m≤2h(2)=-3-2m≥-1解得-2≤m≤-1.②当1<-m2<2因为h(1)=-m>2,与h(s)⊆[-1,2]矛盾,故舍去.③当-m2≥2h(1)=-m≥4与h(s)⊆[-1,2]矛盾,故舍去.综上,m∈[-2,-1].【点睛】本题主要考查了函数的单调性,以及含参数二次函数值域的求法,涉及存在性问题,转化思想和分类讨论思想要求较高,属于难题.21、(1)快递小哥不能在50分钟内将快件送到处.(2)汽车能先到达处.【解析】试题分析:(1)由题意结合图形,根据正弦定理可得,,求得的长,又,可求出快递小哥从地到地的路程,再计算小哥到达地的时间,从而问题可得解;(2)由题意,可根据余弦定理分别算出与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国手推式移动电站数据监测研究报告
- 2024至2030年中国彩色涂层钢卷行业投资前景及策略咨询研究报告
- 2024至2030年中国庭木户行业投资前景及策略咨询研究报告
- 盆景学知识如何做好一盆盆景
- 2024至2030年中国卸瓶台数据监测研究报告
- 2024至2030年中国冶金控制系统行业投资前景及策略咨询研究报告
- 2024至2030年中国交流耐电压测试仪数据监测研究报告
- 2024年山东省(枣庄、菏泽、临沂、聊城)中考语文试题含解析
- 2024年中国颗粒白土市场调查研究报告
- 2024年中国胶印水性光油市场调查研究报告
- 《超市水果陈列标准》
- 2023年02月江西省九江市八里湖新区公开招考50名城市社区工作者(专职网格员)参考题库+答案详解
- 施美美的《绘画之道》与摩尔诗歌新突破
- 七度空间消费者研究总报告(Y-1012)
- 医学英语翻译题汇总
- 外研上册(一起)六年级知识汇总
- 解析人体的奥秘智慧树知到答案章节测试2023年浙江中医药大学
- 湘西名人-贺龙综述
- 剑桥国际少儿英语Level 3 1 Family matters 课件(共16张PPT)
- S7200西门子手册资料
- 《2019版预防和治疗压力性损伤快速参考指南》简要分享
评论
0/150
提交评论