版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省仁寿县二中、华兴中学2025届高一下数学期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某社区义工队有24名成员,他们年龄的茎叶图如下表所示,先将他们按年龄从小到大编号为1至24号,再用系统抽样方法抽出6人组成一个工作小组,则这个小组年龄不超过55岁的人数为()3940112551366778889600123345A.1 B.2 C.3 D.42.同时具有性质:①图象的相邻两条对称轴间的距离是;②在上是增函数的一个函数为()A. B. C. D.3.函数的图象沿轴向左平移个单位长度后得到函数的图象的一个对称中心是()A. B. C. D.4.已知的内角、、的对边分别为、、,边上的高为,且,则的最大值是()A. B. C. D.5.已知三棱锥的所有顶点都在球的球面上,,则球的表面积为()A. B. C. D.6.如图,A,B是半径为1的圆周上的定点,P为圆周上的动点,∠APB是锐角,大小为.图中△PAB的面积的最大值为()A.+sin2 B.sin+sin2C.+sin D.+cos7.已知某数列的前项和(为非零实数),则此数列为()A.等比数列 B.从第二项起成等比数列C.当时为等比数列 D.从第二项起的等比数列或等差数列8.函数的图象向右平移个单位后,得到函数的图象,若为偶函数,则的值为()A. B. C. D.9.已知非零实数a,b满足,则下列不等关系一定成立的是()A. B. C. D.10.下列命题正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱.B.有两个面平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行的几何体叫棱柱.C.绕直角三角形的一边旋转所形成的几何体叫圆锥.D.用一个面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.二、填空题:本大题共6小题,每小题5分,共30分。11.设数列的前项和为满足:,则_________.12.已知,,若,则________.13.各项均为实数的等比数列的前项和为,已知成等差数列,则数列的公比为________.14.利用直线与圆的有关知识求函数的最小值为_______.15.实数2和8的等比中项是__________.16.已知数列满足:,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(其中,)的最小正周期为.(1)求的值;(2)如果,且,求的值.18.若数列满足:存在正整数,对任意的,使得成立,则称为阶稳增数列.(1)若由正整数构成的数列为阶稳增数列,且对任意,数列中恰有个,求的值;(2)设等比数列为阶稳增数列且首项大于,试求该数列公比的取值范围;(3)在(1)的条件下,令数列(其中,常数为正实数),设为数列的前项和.若已知数列极限存在,试求实数的取值范围,并求出该极限值.19.设数列的前项和为,点均在函数的图像上.(Ⅰ)求数列的通项公式;(Ⅱ)设,是数列的前项和,求使得对所有都成立的最小正整数.20.已知偶函数.(1)若方程有两不等实根,求的范围;(2)若在上的最小值为2,求的值.21.已知函数f(1)求fx(2)若fx<m+2在x∈0,
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
求出样本间隔,结合茎叶图求出年龄不超过55岁的有8人,然后进行计算即可.【详解】解:样本间隔为,年龄不超过55岁的有8人,则这个小组中年龄不超过55岁的人数为人.故选:.【点睛】本题主要考查茎叶图以及系统抽样的应用,求出样本间隔是解决本题的关键,属于基础题.2、C【解析】由①得函数的最小正周期是,排除.对于B:,当时,,此时B选项对应函数是减函数,C选项对应函数是增函数,满足②,故选C.3、B【解析】
先求出变换后的函数的解析式,求出所得函数的对称中心坐标,可得出正确选项.【详解】函数的图象沿轴向左平移个单位长度后得到函数的解析式为,令,得,因此,所得函数的图象的一个对称中心是,故选B.【点睛】本题考查图象的变换以及三角函数的对称中心,解题的关键就是求出变换后的三角函数解析式,考查分析问题和解决问题的能力,属于中等题.4、C【解析】
由余弦定理化简可得,利用三角形面积公式可得,解得,利用正弦函数的图象和性质即可得解其最大值.【详解】由余弦定理可得:,故:,而,故,所以:.故选.【点睛】本题主要考查了余弦定理,三角形面积公式,正弦函数的图象和性质在解三角形中的综合应用,考查了转化思想,属于中档题.5、A【解析】设外接圆半径为,三棱锥外接球半径为,∵,∴,∴,∴,∴,由题意知,平面,则将三棱锥补成三棱柱可得,,∴,故选A.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.6、B【解析】
由正弦定理可得,,则,,当点在的中垂线上时,取得最大值,此时的面积最大,求解即可.【详解】在中,由正弦定理可得,,则.,当点在的中垂线上时,取得最大值,此时的面积最大.取的中点,过点作的垂线,交圆于点,取圆心为,则(为锐角),.所以的面积最大为.故选B.【点睛】本题考查了三角形的面积的计算、正弦定理的应用,考查了三角函数的化简,考查了计算能力,属于基础题.7、D【解析】
设数列的前项和为,运用数列的递推式:当时,,当时,,结合等差数列和等比数列的定义和通项公式,即可得到所求结论.【详解】设数列的前项和为,对任意的,(为非零实数).当时,;当时,.若,则,此时,该数列是从第二项起的等差数列;若且,不满足,当时,,此时,该数列是从第二项起的等比数列.综上所述,此数列为从第二项起的等比数列或等差数列.故选:D.【点睛】本题考查数列的递推式的运用,等差数列和等比数列的定义和通项公式,考查分类讨论思想和运算能力,属于中档题.8、B【解析】f(x)=sin2x﹣cos2x=2sin(2x﹣)的图象向左平移φ(0<φ<)个单位,得到g(x)=2sin(2x-2φ﹣).为偶函数,故得到,故得到2sin(-2φ﹣)=-2或2,.因为,故得到,k=-1,的值为.故答案为B.9、D【解析】
根据不等式的基本性质,一一进行判断即可得出正确结果.【详解】A.,取,显然不成立,所以该选项错误;B.,取,显然不成立,所以该选项错误;C.,取,显然不成立,所以该选项错误;D.,由已知且,所以,即.所以该选项正确.故选:.【点睛】本题考查不等式的基本性质,属于容易题.10、B【解析】
根据课本中的相关概念依次判断选项即可.【详解】对于A选项,几何体可以是棱台,满足有两个面平行,其余各面都是四边形,故选项不正确;对于B,根据课本中棱柱的概念得到是正确的;对于C,当绕直角三角形的斜边旋转时构成的几何体不是圆锥,故不正确;对于D,用平行于底面的平面截圆锥得到的剩余的几何体是棱台,故不正确.故答案为B.【点睛】这个题目考查了几何体的基本概念,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用,求得关于的递推关系式,利用配凑法证得是等比数列,由此求得数列的通项公式,进而求得的表达式,从而求得的值.【详解】当时,.由于,而,故,故答案为:.【点睛】本小题主要考查配凑法求数列的通项公式,考查化归与转化的数学思想方法,属于中档题.12、【解析】
先算出的坐标,然后利用即可求出【详解】因为,所以因为,所以即,解得故答案为:【点睛】本题考查的是向量在坐标形式下的相关计算,较简单.13、【解析】
根据成等差数列得到,计算得到答案.【详解】成等差数列,则故答案为:【点睛】本题考查了等差数列,等比数列的综合应用,意在考查学生对于数列公式的灵活运用.14、【解析】
令得,转化为z==,再利用圆心到直线距离求最值即可【详解】令,则故转化为z==,表示上半个圆上的点到直线的距离的最小值的5倍,即故答案为3【点睛】本题考查直线与圆的位置关系,点到直线的距离公式,考查数形结合思想,是中档题15、【解析】所求的等比中项为:.16、0【解析】
先由条件得,然后【详解】因为所以因为,且所以,即故答案为:0【点睛】本题考查的是数列的基础知识,较简单.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)先根据二倍角余弦公式化简,再根据余弦函数性质求解(2)先求得,再根据两角差余弦公式求解【详解】解:(1)因为.所以,因为,所以.(2)由(1)可知,所以,因为,所以,所以.因为.所以.【点睛】本题考查二倍角余弦公式、两角差余弦公式以及余弦函数性质,考查基本分析求解能力,属基础题18、(1);(2);(3).【解析】
(1)设,由题意得出,求出正整数的值即可;(2)根据定义可知等比数列中的奇数项构成的等比数列为阶稳增数列,偶数项构成的等比数列也为阶稳增数列,分和两种情况讨论,列出关于的不等式,解出即可;(3)求出,然后分、和三种情况讨论,求出,结合数列的极限存在,求出实数的取值范围.【详解】(1)设,由于数列为阶稳增数列,则,对任意,数列中恰有个,则数列中的项依次为:、、、、、、、、、、、、、、、、,设数列中值为的最大项数为,则,由题意可得,即,,解得,因此,;(2)由于等比数列为阶稳增数列,即对任意的,,且.所以,等比数列中的奇数项构成的等比数列为阶稳增数列,偶数项构成的等比数列也为阶稳增数列.①当时,则等比数列中每项都为正数,由可得,整理得,解得;②当时,(i)若为正奇数,可设,则,由,得,即,整理得,解得;(ii)若为正偶数时,可设,则,由,得,即,整理得,解得.所以,当时,等比数列为阶稳增数列.综上所述,实数的取值范围是;(3),由(1)知,则.①当时,,,则,此时,数列的极限不存在;②当时,,,上式下式得,所以,,则.(i)若时,则,此时数列的极限不存在;(ii)当时,,此时,数列的极限存在.综上所述,实数的取值范围是.【点睛】本题考查数列新定义“阶稳增数列”的应用,涉及等比数列的单调性问题、数列极限的存在性问题,同时也考查了错位相减法求和,解题的关键就是理解新定义“阶稳增数列”,考查分析问题和解决问题能力,考查了分类讨论思想的应用,属于难题.19、(Ⅰ)(Ⅱ)10【解析】
解:(I)依题意得,即.当n≥2时,;当所以.(II)由(I)得,故=.因此,使得<成立的m必须满足,故满足要求的最小正整数m为10.20、(1);(2)或.【解析】
(1)由偶函数的定义,利用,求得的值,再由对数函数的单调性,结合题设条件,即可求解实数的范围;(2)利用换元法和对勾函数的单调性,以及二次函数的闭区间上的求法,分类讨论对称轴和区间的关系,即可求解.【详解】(1)因为,所以的定义域为,因为是偶函数,即,所以,故,所以,即方程的解为一切实数,所以,因为,且,所以原方程转化为,令,,所以所以在上是减函数,是增函数,当时,使成立的有两个,又由知,与一一对应,故当时,有两不等实根;(2)因为,所以,所以,令,则,令,设,则,因为,所以,即在上是增函数,所以,设,则.(i)当时,的最小值为,所以,解得,或4(舍去);(ii)当时,的最小值为,不合题意;(iii)当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业担保合同范本
- 桂林山水课件模板
- 三年级小古文课件
- 采购机车报告范文
- 财务鉴定报告范文
- 部门经理述职报告范文
- 别墅单体规划报告范文
- 《高血压食疗方》课件
- 2024年度柑橘产业大数据应用与服务合同
- 年度股权转让合同标的及转让价格
- GB/T 13522-2008骨质瓷器
- 矿山生态修复主要技术措施表
- 初三第一次家长会课件
- 小学数学西南师大三年级上册八分数的初步认识《认识分数》PPT
- 《麻醉药品、第一类精神药品购用印鉴卡》申请表
- 未带有效居民身份证考生承诺书
- 跌倒-坠床不良事件鱼骨图分析(12月)
- 绿色卡通风拒绝校园霸凌主题班会PPT
- 防水涂料检测原始记录表
- 保洁工作整改措施
- 铁路线路工巡道作业指导书
评论
0/150
提交评论