版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省广元川师大万达中学2025届数学高一下期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“”是“直线(m+1)x+3my+2=0与直线(m-2)x+(m+1)y-1=0相互垂直”的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件2.是等差数列的前n项和,如果,那么的值是()A.12 B.24 C.36 D.483.设公差不为零的等差数列an的前n项和为Sn.若a2+A.10 B.11 C.12 D.134.已知函数,如果不等式的解集为,那么不等式的解集为()A. B.C. D.5.如图,正方体中,异面直线与所成角的正弦值等于A. B. C. D.16.已知,函数的最小值是()A.5 B.4 C.8 D.67.已知,,则()A.1 B.2 C. D.38.若变量,且满足约束条件,则的最大值为()A.15 B.12 C.3 D.9.设l是直线,,是两个不同的平面,下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则10.取一根长度为的绳子,拉直后在任意位置剪断,则剪得两段绳有一段长度不小于的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设满足约束条件若目标函数的最大值为,则的最小值为_________.12.若函数,则__________.13.底面边长为,高为的直三棱柱形容器内放置一气球,使气球充气且尽可能的膨胀(保持球的形状),则气球表面积的最大值为_______.14.若采用系统抽样的方法从420人中抽取21人做问卷调查,为此将他们随机编号为1,2,…,420,则抽取的21人中,编号在区间[241,360]内的人数是______15.设向量,,______.16.在△ABC中,a、b、c分别为角A、B、C的对边,若b·cosC=c·cosB,且cosA=,则cosB的值为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,函数.(1)求函数的单调递增区间;(2)在中,内角、、所对边的长分别是、、,若,,,求的面积.18.已知数列为等差数列,且.(1)求数列的通项公式;(2)求数列的前项和.19.在中,三个内角所对的边分别为,满足.(1)求角的大小;(2)若,求,的值.(其中)20.数列中,,.前项和满足.(1)求(用表示);(2)求证:数列是等比数列;(3)若,现按如下方法构造项数为的有穷数列,当时,;当时,.记数列的前项和,试问:是否能取整数?若能,请求出的取值集合:若不能,请说明理由.21.已知向量满足,,且向量与的夹角为.(1)求的值;(2)求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:当时,直线为和直线,斜率之积等于,所以垂直;当两直线垂直时,,解得:或,根据充分条件必要条件概念知,“”是“直线(m+1)x+3my+2=0与直线(m-2)x+(m+1)y-1=0相互垂直”的充分不必要条件,故选B.考点:1、充分条件、必要条件;2、两条直线垂直的关系.2、B【解析】
由等差数列的性质:若m+n=p+q,则即可得.【详解】故选B【点睛】本题考查等比数列前n项和的求解和性质的应用,是基础题型,解题中要注意认真审题,注意下标的变化规律,合理地进行等价转化.3、C【解析】
由等差数列的前n项和公式Sn=n(a1+an)【详解】∵S13=117,∴13a1+a132=117,∴a1【点睛】本题考查等差数列的性质求和前n项和公式及等差数列下标和的性质,属于基础题。4、A【解析】
一元二次不等式大于零解集是,先判断二次项系数为负,再根据根与系数关系,可求出a,b的值,代入解析式,求解不等式.【详解】由的解集是,则故有,即.由解得或故不等式的解集是,故选:A.【点睛】对于含参数的一元二次不等式需要先判断二次项系数的正负,再进一步求解参数.5、D【解析】
由线面垂直的判定定理得:,又,所以面,由线面垂直的性质定理得:,即可求解.【详解】解:连接,因为四边形为正方形,所以,又,所以面,所以,所以异面直线与所成角的正弦值等于1,故选D.【点睛】本题考查了线面垂直的判定定理及性质定理,属中档题.6、D【解析】试题分析:因为该函数的单调性较难求,所以可以考虑用不等式来求最小值,,因为,由重要不等式可知,所以,本题正确选项为D.考点:重要不等式的运用.7、A【解析】
根据向量的坐标运算法则直接求解.【详解】因为,,所以,所以,故选:A.【点睛】本题考查向量的坐标运算,属于基础题.8、A【解析】
作出可行域,采用平移直线法判断何处取到最大值.【详解】画出可行域如图阴影部分,由得,目标函数图象可看作一条动直线,由图形可得当动直线过点时,.故选A.【点睛】本题考查线性规划中线性目标函数最值的计算,难度较易.求解线性目标函数的最值时,采用平移直线法是最常规的.9、D【解析】
利用空间线线、线面、面面的位置关系对选项进行逐一判断,即可得到答案.【详解】A.若,,则与可能平行,也可能相交,所以不正确.B.若,,则与可能的位置关系有相交、平行或,所以不正确.C.若,,则可能,所以不正确.D.若,,由线面平行的性质过的平面与相交于,则,又.
所以,所以有,所以正确.故选:D【点睛】本题考查面面平行、垂直的判断,线面平行和垂直的判断,属于基础题.10、A【解析】
设其中一段的长度为,可得出另一段长度为,根据题意得出的取值范围,再利用几何概型的概率公式可得出所求事件的概率.【详解】设其中一段的长度为,可得出另一段长度为,由于剪得两段绳有一段长度不小于,则或,可得或.由于,所以,或.由几何概型的概率公式可知,事件“剪得两段绳有一段长度不小于”的概率为,故选:A.【点睛】本题考查长度型几何概型概率公式的应用,解题时要将问题转化为区间型的几何概型来计算概率,考查分析问题以及运算求解能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
试题分析:试题分析:由得,平移直线由图象可知,当过时目标函数的最大值为,即,则,当且仅当,即时,取等号,故的最小值为.考点:1、利用可行域求线性目标函数的最值;2、利用基本不等式求最值.【方法点晴】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度,此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.12、【解析】
根据分段函数的解析式先求,再求即可.【详解】因为,所以.【点睛】本题主要考查了分段函数求值问题,解题的关键是将自变量代入相应范围的解析式中,属于基础题.13、【解析】由题意,气球充气且尽可能地膨胀时,气球的半径为底面三角形内切圆的半径
∵底面三角形的边长分别为,∴底面三角形的边长为直角三角形,利用等面积可求得∴气球表面积为4π.14、6【解析】试题分析:由题意得,编号为,由得共6个.考点:系统抽样15、【解析】
利用向量夹角的坐标公式即可计算.【详解】.【点睛】本题主要考查了向量夹角公式的坐标运算,属于容易题.16、【解析】
利用余弦定理表示出与,代入已知等式中,整理得到,再利用余弦定理表示出,将及的值代入用表示出,将表示出的与代入中计算,即可求出值.【详解】由题意,由余弦定理得,代入,得,整理得,所以,即,整理得,即,则,故答案为.【点睛】本题考查了解三角形的综合应用,高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)的增区间是,(2)【解析】
(1)利用平面向量数量积的坐标表示公式、二倍角的正弦公式、余弦二倍角的降幂公式、以及辅助角公式可以函数的解析式化为正弦型函数解析式的形式,最后利用正弦型函数的单调性求出函数的单调递增区间;(2)根据(1)所得的结论和,可以求出角的值,利用三角形内角和定理可以求出角的值,再运用正弦定理可得出的值,最后利用三角形面积公式可以求出的面积..【详解】(1)令,解得∴的增区间是,(2)∵∴解得又∵∴中,由正弦定理得∴【点睛】本题考查了平面向量数量积的坐标表示公式,考查了二倍角的正弦公式、余弦二倍角的降幂公式、以及辅助角公式,考查了正弦定理和三角形面积公式,考查了数学运算能力.18、(1);(2).【解析】试题分析:(1)由于为等差数列,根据已知条件求出的第一项和第三项求得数列的公差,即得数列的通项公式,移项可得数列的通项公式;(2)由(1)可知,通过分组求和根据等差数列和等比数列的前项和公式求得的前项和.试题解析:(1)设数列的公差为,∵,∴,∴,∴.(2)考点:等差数列的通项公式及数列求和.19、(1);(2)4,6【解析】
(1)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,求出的值,即可确定出的度数;(2)根据平面向量数量积的运算法则计算得到一个等式,记作①,把的度数代入求出的值,记作②,然后利用余弦定理表示出,把及的值代入求出的值,利用完全平方公式表示出,把相应的值代入,开方求出的值,由②③可知与为一个一元二次方程的两个解,求出方程的解,根据大于,可得出,的值.【详解】(1)已知等式,利用正弦定理化简得,整理得,即,,则.(2)由,得,①又由(1),②由余弦定理得,将及①代入得,,,③由②③可知与为一个一元二次方程的两个根,解此方程,并由大于,可得.【点睛】以三角形和平面向量为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.20、(1)(2)证明见详解.(3)能取整数,此时的取值集合为.【解析】
(1)利用递推关系式,令,通过,求出即可.(2)递推关系式转化为:,化简推出数列是等比数列.(3)由,求出,求出,得到通项公式,然后求解的分母与分子,讨论要使取整数,需为整数,推出的取值集合为时,取整数【详解】解:(1)令,则,将,代入,有.解得:.(2)由得,化简得,又,是等比数列.(3)由,,又是等比数列,,,①当时,依次为,.②当时,,,,要使取整数,需为整数,令,,,要么都为整数,要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023-2024学年广东省深圳市福田区八校联考九年级上学期期中道法试题及答案
- 日喀则地区谢通门县2024年一级造价工程师《土建计量》预测试卷含解析
- 中学生爱情观课件
- 《雅姿美容事业》课件
- 《全时电话会议优势》课件
- 城市发展与城市化教学课件
- 《语文课程与教学论》课件
- 基坑涂料防水施工方案
- 办公楼电梯安装施工方案
- 新学期小学语文教师个人研修与发展计划
- 气候可行性论证技术规范第8部分:能源化工类园区
- 质保金返还合同范本
- RBA商业道德程序文件(系列)
- 医院培训课件:《静脉血栓栓塞症(VTE)专题培训》
- 幼儿园国旗下讲话《我长大了!》
- 机械设备供货、培训及售后服务方案
- 国开2024年《初级会计》形成性考核1-4答案
- 2024广西专业技术人员继续教育公需科目参考答案
- 思想道德与法治(山东联盟-青岛科技大学)智慧树知到期末考试答案章节答案2024年青岛科技大学
- 九十项症状自评量表
- 音韵学入门智慧树知到期末考试答案2024年
评论
0/150
提交评论