云南省昆明市公务员考试数量关系专项练习题含答案(能力提升)_第1页
云南省昆明市公务员考试数量关系专项练习题含答案(能力提升)_第2页
云南省昆明市公务员考试数量关系专项练习题含答案(能力提升)_第3页
云南省昆明市公务员考试数量关系专项练习题含答案(能力提升)_第4页
云南省昆明市公务员考试数量关系专项练习题含答案(能力提升)_第5页
已阅读5页,还剩66页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昆明市公务员考试数量关系专项练习题第一部分单选题(200题)1、7.1,8.6,14.2,16.12,28.4,()

A、32.24

B、30.4

C、32.4

D、30.24

【答案】:答案:A

解析:奇数项依次为:7.1、14.2、28.4,是公比为2的等比数列;偶数项依次为:8.6、16.12,是公比为2的等比数列,即所填数字为16.12×2=32.24。故选A。2、0,1,3,10,()

A、101

B、102

C、103

D、104

【答案】:答案:B

解析:思路一:0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102。思路二:0(第一项)2+1=1(第二项)12+2=332+1=10102+2=102,其中所加的数呈1,2,1,2规律。思路三:各项除以3,取余数=>0,1,0,1,0,奇数项都能被3整除,偶数项除3余1。故选B。3、甲、乙、丙三名质检员对一批依次编号为1~100的电脑进行质量检测,每个人均从随机序号开始,按顺序往后检测,如检测到编号为100的电脑,则该质检员的检测工作结束。某一时刻,甲检测了76台电脑,乙检测了61台电脑,丙检测了54台电脑,则甲、乙、丙三人均检测过的电脑至少有()台。

A、12

B、15

C、16

D、18

【答案】:答案:B

解析:因为甲、乙、丙三人均从随机序号开始,按顺序往后检测。为了使三人均检测过的电脑最少,所以三人的检测要更分散,因为甲检测了76台电脑,覆盖面比较大,所以可以先把乙、丙共同检测的电脑分散在序号的最两端,最少为61+54-100=15(台),甲会覆盖到乙、丙检测的公共部分,故三人均检测过的为15台。故选B。4、祖父今年65岁,3个孙子的年龄分别是15岁、13岁与9岁,问多少年后3个孙子的年龄之和等于祖父的年龄?()

A、23

B、14

C、25

D、16

【答案】:答案:B

解析:设n年后3个孙子的年龄之和等于祖父的年龄,可列方程:65+n=(15+n)+(13+n)+(9+n),解得n=14。故选B。5、有4堆木材,都堆成正三角形垛,层数分别为5,6,7,8层,那么共有木材()根。

A、110

B、100

C、120

D、130

【答案】:答案:B

解析:5层木材有1+2+3+4+5=15,6层木材有1+2+3+4+5+6=21,7层木材有1+2+3+4+5+6+7=28,8层木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故选B。6、4,8,28,216,()

A、6020

B、2160

C、4200

D、4124

【答案】:答案:A

解析:4×(8-1)=28,8×(28-1)=216,即所填数字为28×(216-1)=6020。故选A。7、2,6,18,54,()

A、186

B、162

C、194

D、196

【答案】:答案:B

解析:该数列是以3为公比的等比数列,故空缺项为:54×3=162。故选B。8、-56,25,-2,7,4,()

A、3

B、-12

C、-24

D、5

【答案】:答案:D

解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)项-第N项=-3[第N项-第(N+1)项](N≥2),即所填数字为4-=5。故选D。9、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?()

A、17.25

B、21

C、21.33

D、24

【答案】:答案:B

解析:总费用一定,要使两个月的用水总量最多,需尽量使用低价水。先将两个月4元/吨的额度用完,花费4×5×2=40(元);再将6元/吨的额度用完,花费6×5×2=60(元)。由两个月共交水费108元可知,还剩108-40-60=8(元),可购买1吨单价为8元/吨的水。该户居民这两个月用水总量最多为5×2+5×2+1=21(吨)。故选B。10、某水库共有10个泄洪闸,当10个泄洪闸全部打开时,8小时可将水位由警戒水位降至安全水位;只打开6个泄洪闸时,这个过程为24个小时,如水库每小时的入库量稳定,问如果打开8个泄洪闸时,需要多少小时可将水位降至安全水位?()

A、10

B、12

C、14

D、16

【答案】:答案:B

解析:设水库每小时的入库量为x。根据题意可列方程(10-x)8=(6-x)24,解得x=4,故水库警戒水位至安全水位的容量为(10-4)×8=48;设打开8个泄洪闸需t小时可将水位降至安全水位;则48=(8-4)t,解得t=12。故选B。11、2,3,6,15,()

A、25

B、36

C、42

D、64

【答案】:答案:C

解析:相邻两项间做差。做差后得到的数为1,3,9;容易观察出这是一个等比数列,所以做差数列的下一项为27,则答案为15+27=42。故选C。12、学校举行运动会,要求按照红、黄、绿、紫的颜色插彩旗于校门口,请问第58面旗是什么颜色?()

A、黄

B、红

C、绿

D、紫

【答案】:答案:A

解析:根据“按照红、黄、绿、紫”可知,四个颜色为一个周期,则58÷4=14...2,故第58面旗是14个周期后的第二面,即为黄色。故选A。13、有苹果若干个,若把其换成桔子,则多换5个;若把其换成菠萝,则少掉7个,已知每个桔子4角9分钱,每个菠萝7角钱,每个苹果的单价是多少?()

A、5角

B、5角8分

C、5角6分

D、5角4分

【答案】:答案:C

解析:此题可理解为:把苹果全部卖掉,得到钱若干,若用这些钱买成同样数量的桔子,则剩下49×5=245分,若用这些钱买成同样数量的菠萝,则缺少70×7=490分,所以苹果个数=(245+490)÷(70-49)=35个,苹果总价=49×35+49×5=1960分,每个苹果单价=1960÷35=56分=5角6分。故选C。14、某年的10月里有5个星期六,4个星期日,则这年的10月1日是?()

A、星期一

B、星期二

C、星期三

D、星期四

【答案】:答案:D

解析:10月有31天,因为有5个星期六,4个星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故选D。15、140支社区足球队参加全市社区足球淘汰赛,每一轮都要在未失败过的球队中抽签决定比赛对手,如上一轮未失败过的球队是奇数,则有一队不用比赛直接进人下—轮。问夺冠的球队至少要参加几场比赛? ()

A、3

B、4

C、5

D、6

【答案】:答案:B

解析:根据题意,如果是奇数队的话,有一队轮空,自动进入下一场。题目问冠军至少需要参加几场比赛,为了让冠军参加的场次尽可能的少,每次轮空自动进入下一场的都是冠军。整个比赛过程为:140-70-35-18-9-5-3-2-1,需要进行8轮,有4轮是轮空的。所以冠军至少需要进行4场比赛。故选B。16、12,23,35,47,511,()

A、613

B、612

C、611

D、610

【答案】:答案:A

解析:数位数列,各项首位数字“1,2,3,4,5,(6)”构成等差数列,其余数字“2,3,5,7,11,(13)”构成质数数列。因此,未知项为613。故选A。17、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多少?()

A、256

B、486

C、556

D、376

【答案】:答案:B

解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不如将它换成2个3。因为2×2×2=8,而3×3=9。故拆分出的自然数中,至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为243×2=486。故选B。18、4,12,8,10,()

A、6

B、8

C、9

D、24

【答案】:答案:C

解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故选C。19、甲、乙、丙三辆汽车分别从A地开往千里之外的B地。若乙比甲晚出发30分钟,则乙出发后2小时追上甲;若丙比乙晚出发20分钟,则丙出发后5小时追上乙。若甲出发10分钟后乙出发,当乙追上甲时,丙才出发,则丙追上甲所需时间是()。

A、110分钟

B、150分钟

C、127分钟

D、128分钟

【答案】:答案:B

解析:设甲、乙、丙三辆汽车的速度分别为x、y、z。由于甲行驶30分钟的路程,乙需要2小时才能追上,则30x=(y-x)×2×60,化简得x∶y=4∶5。又因乙行驶20分钟的路程,丙需要5小时才能追上,则20y=(z-y)×5×60,化简得y∶z=15∶16。所以三辆汽车的速度x∶y∶z=12∶15∶16。赋值甲、乙、丙的速度分别为12、15、16,甲出发10分钟后乙出发,则乙追上甲的时间为(分钟),故丙出发时甲已经行驶10+40=50(分钟),设丙追上甲所需时间是t分钟,可得方程12×50=(16-12)×t,解得t=150。故选B。20、1,10,26,75,196,()

A、380

B、425

C、520

D、612

【答案】:答案:C

解析:第一步相差,得到9,16,49,121,明显是平方,分别是3,4,7,11的平方,发现都是第一项+第二项=第三项,所以下一个差值是(7+11)的平方,也就是18的平方,而下个数就应该是196+18的平方等于520。故选C。21、2,1,2/3,1/2,()

A、3/4

B、1/4

C、2/5

D、5/6

【答案】:答案:C

解析:数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5。故选C。22、某商店花10000元进了一批商品,按期望获得相当于进价25%的利润来定价。结果只销售了商品总量的30%。为尽快完成资金周转,商店决定打折销售,这样卖完全部商品后,亏本1000元。问商店是按定价打几折销售的?()

A、九折

B、七五折

C、六折

D、四八折

【答案】:答案:C

解析:由只销售了总量的30%知,打折前销售额为10000×(1+25%)×30%=3750元;设此商品打x折出售,剩余商品打折后,销售额为10000×(1+25%)×(1-30%)x=8750x。根据亏本1000元,可得3750+8750x-10000=﹣1000,解得x=0.6,即打六折。故选C。23、140支社区足球队参加全市社区足球淘汰赛,每一轮都要在未失败过的球队中抽签决定比赛对手,如上一轮未失败过的球队是奇数,则有一队不用比赛直接进人下—轮。问夺冠的球队至少要参加几场比赛? ()

A、3

B、4

C、5

D、6

【答案】:答案:B

解析:根据题意,如果是奇数队的话,有一队轮空,自动进入下一场。题目问冠军至少需要参加几场比赛,为了让冠军参加的场次尽可能的少,每次轮空自动进入下一场的都是冠军。整个比赛过程为:140-70-35-18-9-5-3-2-1,需要进行8轮,有4轮是轮空的。所以冠军至少需要进行4场比赛。故选B。24、8,10,14,18,()

A、24

B、32

C、26

D、20

【答案】:答案:C

解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故选C。25、2/3,1/2,3/7,7/18,()

A、4/11

B、5/12

C、7/15

D、3/16

【答案】:答案:A

解析:4/11,2/3=4/6,1/2=5/10,3/7=6/14,…分子是4、5、6、7,接下来是8.分母是6、10、14、18,接下来是22。故选A。26、为帮助果农解决销路,某企业年底买了一批水果,平均发给每部门若干筐之后还多了12筐,如果再买进8筐则每个部门可分得10筐,则这批水果共有()筐。

A、192

B、198

C、200

D、212

【答案】:答案:A

解析:由于再买进8筐则每个部门可分得10筐,则总筐数加8应能被10整除,排除B、C。将A项代入题目,可得部门数为(192+8)÷10=20(个),则原来平均发给每部门(192-12)÷20=9(筐),水果筐数为整数解,符合题意。故选A。27、80×35×15的值是()。

A、42000

B、36000

C、33000

D、48000

【答案】:答案:A

解析:如果直接进行计算,不免有些麻烦,但我们可以很容易发现45和15都有5这个因子,这其中又有80,所以我们可以对采用凑整法来进行处理。原式=80×9×5×5×3=80×25×27=2000×27=54000。本题运用了整除法。题干中有35,所以结果应有7这个因子,其应为7所整除,观察选项。故选A。28、某小区有40%的住户订阅日报,有15%的住户同时订阅日报和时报,至少有75%的住户至少订阅两种报纸中的一种,问订阅时报的比例至少为多少?()

A、35%

B、50%

C、55%

D、60%

【答案】:答案:B

解析:设订阅时报的住户为x,至少订阅一种报纸的人数为40%+x-15%。由至少75%的住户至少订阅两种报纸中的一种得,40%+x-15%≥75%,解得x≥50%。故选B。29、133/256,125/64,117/16,()

A、109/4

B、103/2

C、109/6

D、115/8

【答案】:答案:A

解析:分子133、125、117、(109)是公差为-8的等差数列,分母256、64、16、(4)是公比为1/4的等比数列。故选A。30、要将浓度分别为20%和5%的A、B两种食盐水混合配成浓度为15%的食盐水900克,问5%的食盐水需要多少克?()

A、250

B、285

C、300

D、325

【答案】:答案:C

解析:设需要5%的食盐水x克,则需要20%的食盐水(900-x)克;根据混合后浓度为15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故选C。31、有一只青蛙在井底,每天上爬10米,又下滑6米,这口井深20米,这只青蛙爬出井口至少需要多少天?()

A、2

B、3

C、4

D、5

【答案】:答案:C

解析:第一天青蛙爬了10-6=4米,距离井口20-4=16米;第二天爬了4+(10-6)=8米,距离井口20-8=12米;第三天爬了8+(10-6)=12米,距离井口20-12=8米<10米;第四天青蛙可以直接爬出井口。这只青蛙爬出井口至少要4天。故选C。32、90,85,81,78,()

A、75

B、74

C、76

D、73

【答案】:答案:C

解析:后项减去前项,可得-5、-4、-3、(-2),这是一个公差为1的等差数列,所以下一项为78-2=76。故选C。33、-1,3,-3,-3,-9,()

A、-9

B、-4

C、-14

D、-45

【答案】:答案:D

解析:题干倍数关系明显,考虑作商。后项除以前项得到新数列:-3、-1、1、3,新数列为公差是2的等差数列,则新数列的下一项应为5,所求项为:-9×5=-45。故选D。34、一个人从家到公司,当他走到路程的一半的时候,速度下降了10%,问:他走完全程所用时间的前半段和后半段所走的路程比是()。

A、10:9

B、21:19

C、11:9

D、22:18

【答案】:答案:B

解析:设前半程速度为10,则后半程速度为9,路程总长为180,则前半程用时9,后半程用时10,总耗时19,一半为9.5。因此前半段时间走过的路程为90+9×(9.5-9)=94.5,后半段时间走过的路程为9×9.5=85.5。两段路程之比为94.5:85.5=21:19。故选B。35、119,83,36,47,()

A、-37

B、-11

C、11

D、37

【答案】:答案:B

解析:119=83+36,83=36+47,即所填数字为36-47=-11。故选B。36、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,为奇数项是2偶数项为公差为1的等差数列,即所填数字为6+(-1)=5。故选B。37、甲、乙、丙三辆汽车分别从A地开往千里之外的B地。若乙比甲晚出发30分钟,则乙出发后2小时追上甲;若丙比乙晚出发20分钟,则丙出发后5小时追上乙。若甲出发10分钟后乙出发,当乙追上甲时,丙才出发,则丙追上甲所需时间是()。

A、110分钟

B、150分钟

C、127分钟

D、128分钟

【答案】:答案:B

解析:设甲、乙、丙三辆汽车的速度分别为x、y、z。由于甲行驶30分钟的路程,乙需要2小时才能追上,则30x=(y-x)×2×60,化简得x∶y=4∶5。又因乙行驶20分钟的路程,丙需要5小时才能追上,则20y=(z-y)×5×60,化简得y∶z=15∶16。所以三辆汽车的速度x∶y∶z=12∶15∶16。赋值甲、乙、丙的速度分别为12、15、16,甲出发10分钟后乙出发,则乙追上甲的时间为(分钟),故丙出发时甲已经行驶10+40=50(分钟),设丙追上甲所需时间是t分钟,可得方程12×50=(16-12)×t,解得t=150。故选B。38、接受采访的100个大学生中,88人有手机,76人有电脑,其中有手机没电脑的共15人,则这100个学生中有电脑但没手机的共有多少人?()

A、25

B、15

C、5

D、3

【答案】:答案:D

解析:根据有手机没电脑共15人,可得既有手机又有电脑(①部分)的人数为88-15=73人,则有电脑但没手机(②部分)的人数为76-73=3人。故选D。39、当含盐30%的60千克盐水蒸发为含盐40%的盐水时,盐水重量为多少千克?()

A、45

B、50

C、55

D、60

【答案】:答案:A

解析:设蒸发后盐水质量为x千克,由盐水中盐的质量不变可得,60×30%=40%x,解得x=45。故选A。40、2.08,8.16,24.32,64.64,()

A、160.28

B、124.28

C、160.56

D、124.56

【答案】:答案:A

解析:小数点之前满足规律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D两项。小数点之后构成等比数列8,16,32,64,128,小数点之后的数超过三位取后两位,所以未知项是160.28。故选A。41、将所有由1、2、3、4组成且没有重复数字的四位数,按从小到大的顺序排列,则排在第12位的四位数是()。

A、3124

B、2341

C、2431

D、3142

【答案】:答案:C

解析:当千位数字是1时有=6种四位数,当千位数字是2时也有=6种四位数,因此排在第12位的就是千位数字为2的最大四位数,即2431。故选C。42、有一个五位数,左边的三位数比右边的两位数的4倍还多4,如果把右边两位数移到最前面,新的五位数比原来的2倍还多11122,则原来的五位数是()。

A、18044

B、24059

C、27267

D、30074

【答案】:答案:B

解析:多位数问题考虑用代入排除法解题。代入A选项,180=44×4+4,但44180≠18044×2+11122,不符合题意,排除;代入B选项,240=59×4+4,59240=24059×2+11122,符合题意,正确。故选B。43、3,2,2,5,17,()

A、24

B、36

C、44

D、56

【答案】:答案:D

解析:依次将相邻两个数中后一个数减去前一个数得-1,0,3,12,再次作差得1,3,9,构成公比为3的等比数列,即所填数字为9×3+12+17=56。故选D。44、4,5,7,9,13,15,()

A、17

B、19

C、18

D、20

【答案】:答案:B

解析:各项减2后为质数列,故下一项为17+2=19。故选B。45、102,314,526,()

A、624

B、738

C、809

D、849

【答案】:答案:B

解析:314-102=212,526-314=212。后一项-前一项=212,即所填数字为536+212=738。故选B。46、某果品公司计划安排6辆汽车运载A、B、C三种水果共32吨进入某市销售,要求每辆车只装同一种水果且必须装满,根据下表提供的信息,则有()种安排车辆方案。

A、1

B、2

C、3

D、4

【答案】:答案:A

解析:设运送三种水果的车辆数分别为X、Y、Z,根据题意可列式①X+Y+Z=6;②6X+5Y+4Z=32,X、Y、Z为车辆数都为正整数,②中6X和4Z都为偶数,所以Y必然是偶数,且Y≤4,Y=2或4。当Y=4时X=2、Z=0不符合题意,故本题解只有一组X=3、Y=2、Z=1。故选A。47、有苹果若干个,若把其换成桔子,则多换5个;若把其换成菠萝,则少掉7个,已知每个桔子4角9分钱,每个菠萝7角钱,每个苹果的单价是多少?()

A、5角

B、5角8分

C、5角6分

D、5角4分

【答案】:答案:C

解析:此题可理解为:把苹果全部卖掉,得到钱若干,若用这些钱买成同样数量的桔子,则剩下49×5=245分,若用这些钱买成同样数量的菠萝,则缺少70×7=490分,所以苹果个数=(245+490)÷(70-49)=35个,苹果总价=49×35+49×5=1960分,每个苹果单价=1960÷35=56分=5角6分。故选C。48、2,3,13,175,()

A、30625

B、30651

C、30759

D、30952

【答案】:答案:B

解析:第一项乘以2,然后加第二项的平方等于第三项。2×2+3×3=13。第二项乘以2,然后加第三项的平方等于第四项。3×2+13×13=175。第三项乘以2,然后加第四项的平方等于第五项。13×2+175×175=30651。故选B。49、1,6,5,7,2,8,6,9,()

A、1

B、2

C、3

D、4

【答案】:答案:C

解析:本题为隔项递推数列,存在关系:第三项=第二项-第一项,第五项=第四项-第三项,……因此未知项为9-6=3。故选C。50、-7,0,1,2,9,()

A、42

B、18

C、24

D、28

【答案】:答案:D

解析:-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1。故选D。51、水面上有三艘同向行驶的轮船,其中甲船的时速为63公里,乙、丙两船的时速均为60公里,但由于故障,丙船每连续行驶30分钟后必须停船2分钟。早上10点,三船到达同一位置,问1小时后,甲、丙两船最多相距多少公里?()

A、5

B、7

C、9

D、11

【答案】:答案:B

解析:1小时内,甲船行驶了63公里,丙船最多停车4分钟,即行驶56分钟,行驶路程为56公里。故最多相距7公里。故选B。52、学校举行运动会,要求按照红、黄、绿、紫的颜色插彩旗于校门口,请问第58面旗是什么颜色?()

A、黄

B、红

C、绿

D、紫

【答案】:答案:A

解析:根据“按照红、黄、绿、紫”可知,四个颜色为一个周期,则58÷4=14...2,故第58面旗是14个周期后的第二面,即为黄色。故选A。53、3,30,129,348,()

A、532

B、621

C、656

D、735

【答案】:答案:D

解析:3=13+2、30=33+3、129=53+4、348=73+5,其中底数1、3、5、7构成连续的奇数列,另一部分2、3、4、5是连续的自然数,即所填数字为93+6=735。故选D。54、学校举行象棋比赛,共有甲、乙、丙、丁4支队。规定每支队都要和另外3支队各比赛一场,胜得3分,败得0分,平双方各得1分。已知:(1)这4支队三场比赛的总得分为4个连续的奇数;(2)乙队总得分排在第一;(3)丁队恰有两场同对方打成平局,其中有一场是与丙队打成平局的。问丙队得几分?()

A、1分

B、3分

C、5分

D、7分

【答案】:答案:A

解析:每支队均比赛3场,因此最高分不超过9分,又知总得分为4个连续的奇数,因此得分有3、5、7、9和1、3、5、7两种情况。若最高分为9分,那么排名第二的队最多赢现场得6分,不可能得7分,不符合题意,故乙队得7分,即2胜1平。由条件(3)知,丁队恰有两场同对方打成平局,积分2分,为偶数,故另一场只能为胜,共得5分。由此可知,丙队得分为1或3分。由于丁队一场未败,故乙队获胜的两场只能是甲队和丙队。目前已知丙队战两场,一负一平,积1分,另一场无论是胜或平,积分均为偶数,故这一场只能为负,总积分为1分。故选A。55、4/5,16/17,16/13,64/37,()

A、64/25

B、64/21

C、35/26

D、75/23

【答案】:答案:A

解析:已知数列可转化为:8/10,16/17,32/26,64/37,(),分子8,16,32,64,()是公比为2的等比数列,分母10,17,26,37,()构成二级等差数列。故第五项的分子应是128,分母是50,约分后为64/25。故选A。56、某农场有36台收割机,要收割完所有的麦子需要14天时间。现收割了7天后增加4台收割机,并通过技术改造使每台机器的效率提升,问收割完所有的麦子还需要几天。

A.3

B.4

C.5

D.6

【答案】:答案:D

解析:方法一:赋值法,赋值每台收割机每天的工作效率为1,则工作总量为36×14,剩下的36×7由36+4=40台收割机完成,技术改造后每台收割机效率为,故剩下需要的时间为。方法二:比例法。由题意,原有收割机36台,增加4台后变为40台,提高效率5%后相当于原先40×(1+5%)=42台收割机的工作效率。效率比为6∶7,故所有时间比为7∶6,还需6天即可完成。故正确答案为D。57、甲、乙两位村民去县城A商店买东西,他们同时在村口出发,甲骑车而乙步行,但他们又同时到达A商店。途中甲休息的时间是乙步行时间的5/6,而乙休息的时间是甲骑车时间的1/2,则甲、乙途中休息的时间比是()。

A、4:1

B、5:1

C、5:2

D、6:1

【答案】:答案:B

解析:设乙步行时间为6x,甲骑车时间为2y,则甲休息的时间为5x,乙休息的时间为y,则由“他们同时在村口出发,甲骑车而乙步行,但他们又同时到达A商店”可得:2y+5x=6x+y,解得x:y=1:1。因此,甲、乙途中休息的时间比是5x:y=5:1。故选B。58、80×35×15的值是()。

A、42000

B、36000

C、33000

D、48000

【答案】:答案:A

解析:如果直接进行计算,不免有些麻烦,但我们可以很容易发现45和15都有5这个因子,这其中又有80,所以我们可以对采用凑整法来进行处理。原式=80×9×5×5×3=80×25×27=2000×27=54000。本题运用了整除法。题干中有35,所以结果应有7这个因子,其应为7所整除,观察选项。故选A。59、2,3,10,23,()

A、35

B、42

C、68

D、79

【答案】:答案:B

解析:相邻两项后一项减前一项,3-2=1,10-3=7,13-10=13,42-23=19,是一个公差为6的等差数列,即所填数字为23+19=42。故选B。60、8,4,8,10,14,()

A、22

B、20

C、19

D、24

【答案】:答案:C

解析:题干数列为递推数列,规律为:8÷2+4=8,4÷2+8=10,8÷2+10=14,即第一项÷2+第二项=第三项,因此未知项为10÷2+14=19。故选C。61、8,3,17,5,24,9,26,18,30,()

A、22

B、25

C、33

D、36

【答案】:答案:B

解析:多重数列。很明显数列很长,确定为多重数列。先考虑交叉,发现没有规律,无对应的答案。因为总共十项,考虑两两分组,再内部作加减乘除方等运算,发现每两项的和依次为11,22,33,44,(55=30+25)。故选B。62、2,6,18,54,()

A、186

B、162

C、194

D、196

【答案】:答案:B

解析:该数列是以3为公比的等比数列,故空缺项为:54×3=162。故选B。63、学校举行象棋比赛,共有甲、乙、丙、丁4支队。规定每支队都要和另外3支队各比赛一场,胜得3分,败得0分,平双方各得1分。已知:(1)这4支队三场比赛的总得分为4个连续的奇数;(2)乙队总得分排在第一;(3)丁队恰有两场同对方打成平局,其中有一场是与丙队打成平局的。问丙队得几分?()

A、1分

B、3分

C、5分

D、7分

【答案】:答案:A

解析:每支队均比赛3场,因此最高分不超过9分,又知总得分为4个连续的奇数,因此得分有3、5、7、9和1、3、5、7两种情况。若最高分为9分,那么排名第二的队最多赢现场得6分,不可能得7分,不符合题意,故乙队得7分,即2胜1平。由条件(3)知,丁队恰有两场同对方打成平局,积分2分,为偶数,故另一场只能为胜,共得5分。由此可知,丙队得分为1或3分。由于丁队一场未败,故乙队获胜的两场只能是甲队和丙队。目前已知丙队战两场,一负一平,积1分,另一场无论是胜或平,积分均为偶数,故这一场只能为负,总积分为1分。故选A。64、21,27,40,61,94,148,()

A、239

B、242

C、246

D、252

【答案】:答案:A

解析:依次将相邻两项作差得6,13,21,33,54;二次作差得7,8,12,21;再次作差得12,22,32,是连续自然数的平方。即所填数字为42+21+54+148=239。故选A。65、1/5,1/3,3/7,1/2,()

A、5/9

B、1/6

C、6

D、3/5

【答案】:答案:A

解析:1/3写成2/6,1/2写成4/8,分子分母均是公差为1的等差数列。故选A。66、5,10,20,(),80

A、30

B、40

C、50

D、60

【答案】:答案:B

解析:公比为2的等比数列。故选B。67、某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少生产100套;如果每天生产23套服装,就可超过订货任务20套。那么,这批服装的订货任务是多少套?()

A、760

B、1120

C、900

D、850

【答案】:答案:C

解析:由题意每天生产多出3套,总共就会多生产出120,那么计划的天数为40天,所以这批服装为20×40+100=900(套)。故选C。68、-3,-2,1,6,()

A、8

B、11

C、13

D、15

【答案】:答案:C

解析:相邻两项之差依次为1,3,5,(7),应填入13。故选C。69、-1,6,25,62,()

A、123

B、87

C、150

D、109

【答案】:答案:A

解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故选A。70、3,-6,12,-24,()

A、42

B、44

C、46

D、48

【答案】:答案:D

解析:公比为-2的等比数列。故选D。71、1,2,6,30,210,()

A、1890

B、2310

C、2520

D、2730

【答案】:答案:B

解析:2÷1=2,6÷2=3,30÷6=5,210÷30=7,相邻两项后一项除以前一项的商构成连续的质数列,即所填数字为210×11=2310。故选B。72、2,2,6,14,34,()

A、82

B、50

C、48

D、62

【答案】:答案:A

解析:2+2×2=6;2+6×2=14;6+14×2=34;14+34×2=82。故选A。73、2,6,30,210,2310,()

A、30160

B、30030

C、40300

D、32160

【答案】:答案:B

解析:依次将相邻两个数中后一个数除以前一个数得3,5,7,11,为一个质数数列,即所填数字为2310×13=30030。故选B。74、0,3,18,33,68,95,()

A、145

B、148

C、150

D、153

【答案】:答案:C

解析:原数列写为0=0×1,3=1×3,18=2×9,33=3×11,68=4×17,95=5×19,其中1,3,9,11,17,19构成的数列奇数项是等差数列,偶数项也是等差数列。故空缺处数字为6×25=150。故选C。75、甲、乙二人现在的年龄之和是一个完全平方数。7年前,他们各自的年龄都是完全平方数。再过多少年,他们的年龄之和又是完全平方数?()

A、20

B、18

C、16

D、9

【答案】:答案:B

解析:设七年前甲、乙的年龄分别为x、y岁,则七年后两人的年龄和为(x+7)+(y+7)=x+y+14,根据题意x、y、x+y+14均为完全平方数。100以内的平方数有1、4、9、16、25、36、49、64、81、100,其中1+49+14=64,1、49、64均为完全平方数,则七年前甲1岁,乙49岁,现在甲为8岁,乙为56岁,年龄和为64,甲乙年龄和为偶数,下一个平方数为偶数的是100,需要再过(100-64)÷2=18年。故选B。76、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多少?()

A、256

B、486

C、556

D、376

【答案】:答案:B

解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不如将它换成2个3。因为2×2×2=8,而3×3=9。故拆分出的自然数中,至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为243×2=486。故选B。77、12,27,72,(),612

A、108

B、188

C、207

D、256

【答案】:答案:C

解析:(第一项-3)×3=第二项,(72-3)×3=(207),(207-3)×3=612。故选C。78、水面上有三艘同向行驶的轮船,其中甲船的时速为63公里,乙、丙两船的时速均为60公里,但由于故障,丙船每连续行驶30分钟后必须停船2分钟。早上10点,三船到达同一位置,问1小时后,甲、丙两船最多相距多少公里?()

A、5

B、7

C、9

D、11

【答案】:答案:B

解析:1小时内,甲船行驶了63公里,丙船最多停车4分钟,即行驶56分钟,行驶路程为56公里。故最多相距7公里。故选B。79、1,2,3,6,12,24,()

A、48

B、45

C、36

D、32

【答案】:答案:A

解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N项=第N-1项+…+第一项,即所填数字为1+2+3+6+12+24=48。故选A。80、有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、两种或三种。至少有多少名学生订阅的杂志种类相同?()

A、13

B、14

C、15

D、16

【答案】:答案:C

解析:此题“订阅杂志种类”就是分组的依据。订阅一种杂志有3种情况,订阅两种杂志有3种情况,订阅三种杂志有1种情况。因此,总共有7种情况,故至少有14+1=15名学生订阅的杂志种类相同。故选C。81、1,2,3,6,12,()

A、16

B、20

C、24

D、36

【答案】:答案:C

解析:分3组=>(1,2),(3,6),(12,24)=>每组后项除以前项=>2、2、2。故选C。82、一人骑车上班需要50分钟,途中骑了一段时间后自行车坏了,只好推车去上班,结果晚到10分钟,如果骑车的速度比步行的速度快一倍,则步行了多少分钟?()

A、20

B、34

C、40

D、50

【答案】:答案:A

解析:设骑车速度为2,步行速度为1,设步行时间为t分钟,由题意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分钟。故选A。83、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,奇数项是2,偶数项构成公差为1的等差数列,即所填数字为6+(-1)=5。故选B。84、1,2,0,3,-1,4,()

A、-2

B、0

C、5

D、6

【答案】:答案:A

解析:奇数项1、0、-1、(-2)是公差为-1的等差数列;偶数项2、3、4是连续自然数。故选A。85、84,12,48,30,39,()

A、23

B、36.5

C、34.5

D、43

【答案】:答案:C

解析:依次将相邻两个数中前一个数减去后一个数得72,-36,18,-9,构成公比为-0.5的等比数列,即所填数字为39-4.5=34.5。故选C。86、某实验室模拟酸雨,现有浓度为30%和10%的两种盐酸溶液,实验需要将二者混合配置出浓度为16%的盐酸700克备用,那么30%的盐酸需要多少克?()

A、180

B、190

C、200

D、210

【答案】:答案:D

解析:设需要30%的盐酸溶液x克,由二者混合后的盐酸700克可知,需要10%的盐酸(700-x)克。则30%x+10%×(700-x)=16%×700,解得x=210。故选D。87、-56,25,-2,7,4,()

A、3

B、-12

C、-24

D、5

【答案】:答案:D

解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)项-第N项=-3[第N项-第(N+1)项](N≥2),即所填数字为4-=5。故选D。88、5,12,24,36,52,()

A、58

B、62

C、68

D、72

【答案】:答案:C

解析:5=2+3,12=5+7,24=11+13,36=17+19,52=23+29,全是从小到大的质数和,所以下一个是31+37=68。故选C。89、调研人员在一次市场调查活动中收回了435份调查问卷,其中80%的调查问卷上填写了被调查者的手机号码。那么调研人员至少需要从这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后两位相同的被调查者?()

A、101

B、175

C、188

D、200

【答案】:答案:C

解析:在435份调查问卷中有435×20%=87份没有写手机号;且手机号码后两位可能出现的情况一共10×10=100种,因此要保证一定能找到两个手机号码后两位相同的被调查者,至少需要抽取87+100+1=188份。故选C。90、假设地球上新生成的资源的增长速度是一定的,照此推算,地球上的资源可供110亿人生活90年,或者可供90亿人生活210年。为了使人类能够不断繁衍,那么地球最多能养活多少亿人?()

A、70

B、75

C、80

D、100

【答案】:答案:B

解析:设地球的原始资源可供x亿人生存一年,每年增长的资源可供y亿人生存一年,即x+90y=90×110,x+210y=210×90,两式联立得y=75,为了使人类能够不断繁衍,那么地球最多能养活75亿人。故选B。91、大年三十彩灯悬,彩灯齐明光灿灿,三三数时能数尽,五五数时剩一盏,七七数时刚刚好,八八数时还缺三,请你自己算一算,彩灯至少有多少盏?()

A、21

B、27

C、36

D、42

【答案】:答案:A

解析:由三三数时能数尽、七七数时刚刚好可知,彩灯的数量能同时被3和7整除,排除B、C。又由五五数时剩一盏可知,彩灯的数量除以5余1,排除D。故选A。92、张大伯卖白菜,开始定价是每千克5角钱,一点都卖不出去,后来每千克降低了几分钱,全部白菜很快卖了出去,一共收入22.26元,则每千克降低了几分钱?

A、3

B、4

C、6

D、8

【答案】:答案:D

解析:代入法,只有降8分时收入才能被价格整除。(2226=2×3×7×53=42×53)。故选D。93、2/3,1/2,3/7,7/18,()

A、4/11

B、5/12

C、7/15

D、3/16

【答案】:答案:A

解析:4/11,2/3=4/6,1/2=5/10,3/7=6/14,…分子是4、5、6、7,接下来是8.分母是6、10、14、18,接下来是22。故选A。94、0,1,3,10,()

A、101

B、102

C、103

D、104

【答案】:答案:B

解析:思路一:0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102。思路二:0(第一项)2+1=1(第二项)12+2=332+1=10102+2=102,其中所加的数呈1,2,1,2规律。思路三:各项除以3,取余数=>0,1,0,1,0,奇数项都能被3整除,偶数项除3余1。故选B。95、30,42,56,72,()

A、86

B、60

C、90

D、94

【答案】:答案:C

解析:第一次做差之后为12、14、16,是公差为2的等差数列,下一个应为18,原数列下一项为18+72=90。故选C。96、A、B、C三个试管中各盛有10克、20克、30克水,把某种浓度的盐水10克倒入A中,充分混合后从A中取出10克倒入B中,再充分混合后从B中取出10克倒入C中,最后得到C中盐水的浓度为0.5%。则开始倒入试管A中的盐水浓度是多少?()

A、12%

B、15%

C、18%

D、20%

【答案】:答案:A

解析:C中含盐量为(30+10)×0.5%=0.2克,即从B中取出的10克中含盐0.2克,则B的浓度为0.2÷10=2%,进而求出B中含盐量为(20+10)×2%=0.6克,即从A中取出的10克中含盐0.6克,可得A的浓度为0.6÷10=6%,进一步得出A中含盐量为(10+10)×6%=1.2克,故开始倒入A中的盐水浓度为1.2÷10=12%。故选A。97、90,85,81,78,()

A、75

B、74

C、76

D、73

【答案】:答案:C

解析:后项减去前项,可得-5、-4、-3、(-2),这是一个公差为1的等差数列,所以下一项为78-2=76。故选C。98、某年的10月里有5个星期六,4个星期日,则这年的10月1日是?()

A、星期一

B、星期二

C、星期三

D、星期四

【答案】:答案:D

解析:10月有31天,因为有5个星期六,4个星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故选D。99、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?()

A、17.25

B、21

C、21.33

D、24

【答案】:答案:B

解析:总费用一定,要使两个月的用水总量最多,需尽量使用低价水。先将两个月4元/吨的额度用完,花费4×5×2=40(元);再将6元/吨的额度用完,花费6×5×2=60(元)。由两个月共交水费108元可知,还剩108-40-60=8(元),可购买1吨单价为8元/吨的水。该户居民这两个月用水总量最多为5×2+5×2+1=21(吨)。故选B。100、某杂志为每篇投稿文章安排两位审稿人,若都不同意录用则弃用;若都同意则录用;若两人意见不同,则安排第三位审稿人,并根据其意见录用或弃用,如每位审稿人录用某篇文章的概率都是60%,则该文章最终被录用的概率是()。

A、36%

B、50.4%

C、60%

D、64.8%

【答案】:答案:D

解析:根据题意,该文章最终被录用可分为以下两种情况:(1)前两位审稿人都同意,概率为0.6×0.6=0.36;(2)前两位审稿人只有一人同意且第三位审稿人同意,概率为;故该文章最终被录用的概率为0.36+0.288=0.648=64.8%。故选D。101、30个小朋友围成一圈玩传球游戏,每次球传给下一个小朋友需要1秒。当老师喊“转向”时,要改变传球方向。如果从小华开始传球,老师在游戏开始后的第16、31、49秒喊“转向”,那么在第多少秒时,球会重新回到小华手上?()

A、68

B、69

C、70

D、71

【答案】:答案:A

解析:设小华的位置为0号,按顺时针方向编号依次为0号、1号、2号、……、29号。小华以顺时针方向开始传球。①经过16秒,顺时针传到16号;②转向:经过15秒(31-16=15),逆时针传到1号;③转向:经过18秒(49-31=18),顺时针传到19号;④转向:经过19秒,逆时针传回到小华手中。在第49+19=68(秒)时,球会重新回到小华手上。故选A。102、某校二年级全部共3个班的学生排队.每排4人,5人或6人,最后一排都只有2人.这个学校二年级有()名学生。

A、120

B、122

C、121

D、123

【答案】:答案:B

解析:由题意知,学生数除以4、5、6均余2,由代入法可以得到,只有B项满足条件。103、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多少?()

A、256

B、486

C、556

D、376

【答案】:答案:B

解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不如将它换成2个3。因为2×2×2=8,而3×3=9。故拆分出的自然数中,至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为243×2=486。故选B。104、-24,3,30,219,()

A、289

B、346

C、628

D、732

【答案】:答案:D

解析:-24=(-3)3+3,3=03+3,30=33+3,219=63+3,即所填数字为93+3=732。故选D。105、玉米的正常市场价格为每公斤1.86元到2.18元,近期某地玉米价格涨至每公斤2.68元。经测算,向市场每投放储备玉米100吨,每公斤玉米价格下降0.05元。为稳定玉米价格,向该地投放储备玉米的数量不能超过()。

A、800吨

B、1080吨

C、1360吨

D、1640吨

【答案】:答案:D

解析:要稳定玉米价格,玉米的价格必须调整至正常区间。所以最低下降为每公斤1.86元,即下降了2.68-1.86=0.82(元)。因为每投放100吨,价格下降0.05元,所以投放玉米的数量不能超过0.82÷0.05×100=1640(吨)。故选D。106、-1,1,7,25,79,()

A、121

B、241

C、243

D、254

【答案】:答案:B

解析:相邻两项之差依次是2,6,18,54,(162),这是一个公比为3的等比数列,79+162=(241)。故选B。107、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?()

A、15

B、13

C、10

D、8

【答案】:答案:B

解析:构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。故选B。108、2,17,29,38,44,()

A、45

B、46

C、47

D、48

【答案】:答案:C

解析:做差。第一次做差结果为15,12,9,6,所以后面一项为3,后面一项为47。故选C。109、118,199,226,(),238

A、228

B、230

C、232

D、235

【答案】:答案:D

解析:相邻两项后一项减前一项,199-118=81,226-199=27,235-226=9,238-235=3,是公比为的等比数列,即所填数字为238-3=226+9=235。故选D。110、修一条公路,甲工程队单独做需要40天,乙工程队单独做需要24天。现在两队合作,同时从两端开工,在距中点750米处两队相遇。那么这条公路长多少米?()

A、3750

B、3000

C、4000

D、6000

【答案】:答案:D

解析:甲乙效率之比=24:40=3:5,完成的任务量之比3:5、相差2份对应对应750×2=1500米,总任务量8份对应1500×4=6000米。故选D。111、某班有56名学生,每人都参加了a、b、c、d、e五个兴趣班中的一个。已知有27人参加a兴趣班,参加b兴趣班的人数第二多,参加c、d兴趣班的人数相同,e兴趣班的参加人数最少,只有6人,问参加b兴趣班的学生有多少个?()

A、7个

B、8个

C、9个

D、10个

【答案】:答案:C

解析:设b班人数为x,c、d班的人数均为y,由b班人数第二多,e班人数最少,可知各班人数关系为:27>x>y>6。该班有56名学生,56=27+x+y+y+6,即x+2y=23,其中2y是偶数,23为奇数,则x为奇数,排除B、D。代入A选项,当x=7时,y=8,则x<Y,不符合题意,排除。故选C。112、1806,1510,1214,918,()

A、724

B、722

C、624

D、622

【答案】:答案:D

解析:百位和千位看做一个数列,是18,15,12,9,构成公差为-3的等差数列,所以下一项应为6;十位和个位看做一个数列,是06,10,14,18,构成公差为4的等差数列,所以下一项应为22。故未知项应为622。故选D。113、现有5盒动画卡片,各盒卡片张数分别为:7、9、11、14、17。卡片按图案分为米老鼠、葫芦娃、喜羊羊和灰太狼4种,每个盒内装的是同图案的卡片。已知米老鼠的卡片只有一盒,而喜羊羊、灰太狼图案的卡片数之和比葫芦娃图案的多1倍。据此可知,图案为米老鼠的卡片张数为()。

A、7

B、9

C、14

D、17

【答案】:答案:A

解析:(喜洋洋+灰太狼):葫芦娃=2:1,喜洋洋+灰太狼+葫芦娃是3的倍数;总张数=7+9+11+14+17=58张,58除以3余1,可得米老鼠的卡片只能是7张。故选A。114、0,6,24,60,()

A、70

B、80

C、100

D、120

【答案】:答案:D

解析:0=0×1×2,6=1×2×3,24=2×3×4,60=3×4×5,()=4×5×6=120。另解,0=13-1,6=23-2,24=33-3,60=43-4,()=53-5=120。故选D。115、某饮料店有纯果汁(即浓度为100%)10千克,浓度为30%的浓缩还原果汁20千克。若取纯果汁、浓缩还原果汁各10千克倒入10千克纯净水中,再倒入10千克的浓缩还原果汁,则得到的果汁浓度为多少。()

A、40%

B、37.5%

C、35%

D、30%

【答案】:答案:A

解析:根据题干可得,一共倒入纯果汁(即浓度为100%)10千克,纯净水10千克,浓度为30%的浓缩还原果汁20千克。可知最终溶液的量为10+10+20=40(千克),最终溶质为10+20×30%=16(千克)。则最终果汁浓度=16÷40×100%=40%。故选A。116、5,4,10,8,15,16,(),()

A、20,18

B、18,32

C、20,32

D、18,36

【答案】:答案:C

解析:从题干中给出的数字不难看出,奇数项5,10,15,(20)构成公差为5的等差数列,偶数项4,8,16,(32)构成公比为2的等比数列。故选C。117、5,12,24,36,52,()

A、58

B、62

C、68

D、72

【答案】:答案:C

解析:5=2+3,12=5+7,24=11+13,36=17+19,52=23+29,全是从小到大的质数和,所以下一个是31+37=68。故选C。118、2.08,8.16,24.32,64.64,()

A、160.28

B、124.28

C、160.56

D、124.56

【答案】:答案:A

解析:小数点之前满足规律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D两项。小数点之后构成等比数列8,16,32,64,128,小数点之后的数超过三位取后两位,所以未知项是160.28。故选A。119、1,3,10,37,()

A、112

B、144

C、148

D、158

【答案】:答案:B

解析:3=1×4-1;10=3×4-2;37=10×4-3;144=37×4-4。故选B。120、2,12,40,112,()

A、224

B、232

C、288

D、296

【答案】:答案:C

解析:原数列可以写成1×2,3×4,5×8,7×16,前一个乘数数列为1,3,5,7,是等差数列,下一项是9,后一个乘数数列为2,4,8,16,是等比数列,下一项是32,所以原数列空缺项为9×32=288。故选C。121、30,42,56,72,()

A、86

B、60

C、90

D、94

【答案】:答案:C

解析:第一次做差之后为12、14、16,是公差为2的等差数列,下一个应为18,原数列下一项为18+72=90。故选C。122、2.08,8.16,24.32,64.64,()

A、160.28

B、124.28

C、160.56

D、124.56

【答案】:答案:A

解析:小数点之前满足规律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D两项。小数点之后构成等比数列8,16,32,64,128,小数点之后的数超过三位取后两位,所以未知项是160.28。故选A。123、某高速公路收费站对过往车辆的收费标准是:大型车30元/辆、中型车15元/辆、小型车10元/辆。某天,通过收费站的大型车与中型车的数量比是5∶6,中型车与小型车的数量比是4∶11,小型车的通行费总数比大型车的多270元,这天的收费总额是()。

A、7280元

B、7290元

C、7300元

D、7350元

【答案】:答案:B

解析:大、中、小型车的数量比为10∶12∶33。以10辆大型车、12辆中型车、33辆小型车为一组。每组小型车收费比大型车多33×10-10×30=30元。实际多270元,说明共通过了270÷30=9组。每组收费10×30+12×15+33×10=810元,收费总额为9×810=7290元。故选B。124、甲、乙两人在一条400米的环形跑道上从相距200米的位置出发,同向匀速跑步。当甲第三次追上乙的时候,乙跑了2000米。问甲的速度是乙的多少倍?()

A、1.2

B、1.5

C、1.6

D、2.0

【答案】:答案:B

解析:环形同点同向出发每追上一次,甲比乙多跑一圈。第一次由于是不同起点,甲比乙多跑原来的差距200米;之后两次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,时间相同,则速度比与路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故选B。125、6,6,12,36,()

A、124

B、140

C、144

D、164

【答案】:答案:C

解析:两两相除。6/6=1,6/12=1/2,12/36=1/3,下个数为36/()=1/4。故选C。126、118,199,226,(),238

A、228

B、230

C、232

D、235

【答案】:答案:D

解析:相邻两项后一项减前一项,199-118=81,226-199=27,235-226=9,238-235=3,是公比为的等比数列,即所填数字为238-3=226+9=235。故选D。127、20/9,4/3,7/9,4/9,1/4,()

A、3/7

B、5/12

C、5/36

D、7/36

【答案】:答案:C

解析:20/9,4/3,7/9,4/9,1/4,(5/36)=>80/36,48/36,28/36,16/36,9/36,5/36;分母36,36,36,36,36,36等差;分子80,48,28,16,9,5三级等差。故选C。128、(1296-18)÷36的值是()。

A、20

B、35.5

C、19

D、36

【答案】:答案:B

解析:原式可转化为1296÷36-18÷36=36-0.5=35.5。故选B。129、[(9,6)42(7,7)][(7,3)40(6,4)][(8,2)()(3,2)]

A、30

B、32

C、34

D、36

【答案】:答案:A

解析:(9-6)×(7+7)=42,(7-3)×(6+4)=40,(8-2)×(3+2)=(30)。故选A。130、3,-6,12,-24,()

A、42

B、44

C、46

D、48

【答案】:答案:D

解析:公比为-2的等比数列。故选D。131、4,12,8,10,()

A、6

B、8

C、9

D、24

【答案】:答案:C

解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故选C。132、-3,-2,5,24,61,()

A、122

B、156

C、240

D、348

【答案】:答案:A

解析:相邻两项逐差:因此,未知项=61+61=122。故选A。133、4,5,7,9,13,15,()

A、17

B、19

C、18

D、20

【答案】:答案:B

解析:各项减2后为质数列,故下一项为17+2=19。故选B。134、一条马路的两边各立着10盏电灯,现在为了节省用电,决定每边关掉3盏,但为了安全,道路起点和终点两边的灯必须是亮的,而且任意一边不能连续关掉两盏。问总共有多少种方案?()

A、120

B、320

C、400

D、420

【答案】:答案:C

解析:每一边7盏亮着的灯形成6个空位,把3盏熄灭的灯插进去,则共有=400种方案。故选C。135、8,10,14,18,()

A、24

B、32

C、26

D、20

【答案】:答案:C

解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故选C。136、某服装店有一批衬衣共76件,分别卖给了33位顾客,每位顾客最多买了3件。衬衣定价为100元,买1件按原价,买2件总价打九折,买3件总价打八折。最后卖完这批衬衣共收入6460元,则买了3件的顾客有()位。

A.4

B.8

C.14

D.15

【答案】:答案:C

解析:由题意可设买了1件、2件、3件衣服的人数分别为x、y、z人,则可得x+y+z=33,x+2y+3z=76,,联立求解可得x=4,y=15,z=14。故正确答案为C。137、1,2,6,30,210,()

A、1890

B、2310

C、2520

D、2730

【答案】:答案:B

解析:2÷1=2,6÷2=3,30÷6=5,210÷30=7,相邻两项后一项除以前一项的商构成连续的质数列,即所填数字为210×11=2310。故选B。138、要将浓度分别为20%和5%的A、B两种食盐水混合配成浓度为15%的食盐水900克,问5%的食盐水需要多少克?()

A、250

B、285

C、300

D、325

【答案】:答案:C

解析:设需要5%的食盐水x克,则需要20%的食盐水(900-x)克;根据混合后浓度为15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故选C。139、某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少生产100套;如果每天生产23套服装,就可超过订货任务20套。那么,这批服装的订货任务是多少套?()

A、760

B、1120

C、900

D、850

【答案】:答案:C

解析:由题意每天生产多出3套,总共就会多生产出120,那么计划的天数为40天,所以这批服装为20×40+100=900(套)。故选C。140、1,7,8,57,()

A、123

B、122

C、121

D、120

【答案】:答案:C

解析:12+7=8,72+8=57,82+57=121。故选C。141、1,1,2,6,24,()

A、11

B、50

C、80

D、120

【答案】:答案:D

解析:依次将相邻两个数中后一个数除以前一个数得1,2,3,4,为连续自然数列,即所填数字为24×5=120。故选D。142、学校举行象棋比赛,共有甲、乙、丙、丁4支队。规定每支队都要和另外3支队各比赛一场,胜得3分,败得0分,平双方各得1分。已知:(1)这4支队三场比赛的总得分为4个连续的奇数;(2)乙队总得分排在第一;(3)丁队恰有两场同对方打成平局,其中有一场是与丙队打成平局的。问丙队得几分?()

A、1分

B、3分

C、5分

D、7分

【答案】:答案:A

解析:每支队均比赛3场,因此最高分不超过9分,又知总得分为4个连续的奇数,因此得分有3、5、7、9和1、3、5、7两种情况。若最高分为9分,那么排名第二的队最多赢现场得6分,不可能得7分,不符合题意,故乙队得7分,即2胜1平。由条件(3)知,丁队恰有两场同对方打成平局,积分2分,为偶数,故另一场只能为胜,共得5分。由此可知,丙队得分为1或3分。由于丁队一场未败,故乙队获胜的两场只能是甲队和丙队。目前已知丙队战两场,一负一平,积1分,另一场无论是胜或平,积分均为偶数,故这一场只能为负,总积分为1分。故选A。143、145,120,101,80,65,()

A、48

B、49

C、50

D、51

【答案】:答案:A

解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇数项,每项等于首项为12,公差为-2的平方加1;偶数项,每项等于首项为11,公差为-2的平方减1,即所填数字为72-1=48。故选A。144、21,59,1117,2325,(),9541

A、3129

B、4733

C、6833

D、8233

【答案】:答案:B

解析:原数列各项可作如下拆分:[2|1],[5|9],[11|17],[23|25],[47|33],[95|41]。其中前半部分数字作差后构成等比数列,后半部分作差后构成等差数列。因此未知项为4733。故选B。145、甲、乙和丙三种不同浓度、不同规格的酒精溶液,每瓶重量分别为3公斤、7公斤和9公斤,如果将甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,得到的酒精浓度分别为50%,50%和60%。如果将三种酒精合各一瓶混合,得到的酒精中要加入多少公斤纯净水后,其浓度正好是50%?()

A、1

B、1.3

C、1.6

D、1.9

【答案】:答案:C

解析:甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,相当于两瓶甲、两瓶乙、两瓶丙混合,前两种浓度都是50%,所以只需要加入适量水使得乙丙混合浓度由60%变为50%即可。设加水x,可将浓度为60%的酒精溶液溶度变为50%,即,解得x=3.2(公斤)。此时甲乙,甲丙和乙丙溶液各一瓶混合后浓度

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论