




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市上海外国语大学附属外国语学校2024年数学高一下期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在△中,点是上一点,且,是中点,与交点为,又,则的值为()A. B. C. D.2.已知点,为坐标原点,分别在线段上运动,则的周长的最小值为()A. B. C. D.3.已知一个等比数列项数是偶数,其偶数项之和是奇数项之和的3倍,则这个数列的公比为()A.2 B.3 C.4 D.64.数列满足,则数列的前项和等于()A. B. C. D.5.某学生4次模拟考试英语作文的减分情况如下表:显然与之间有较好的线性相关关系,则其线性回归方程为()A. B.C. D.6.设,过定点的动直线和过定点的动直线交于点,则的最大值是()A. B. C. D.7.如果直线a平行于平面,则()A.平面内有且只有一直线与a平行B.平面内有无数条直线与a平行C.平面内不存在与a平行的直线D.平面内的任意直线与直线a都平行8.在三棱锥中,,二面角的大小为,则三棱锥的外接球的表面积为()A. B. C. D.9.已知是两条不同的直线,是两个不同的平面,则下列命题正确的是A.,则B.,则C.,则D.,则10.若直线过两点,,则的斜率为()A. B. C.2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解集为________12.方程在区间内解的个数是________13.在锐角△中,,,,则________14.若存在实数,使不等式成立,则的取值范围是_______________.15.在平面直角坐标系中,从五个点:中任取三个,这三点能构成三角形的概率是_______.16.设数列是首项为0的递增数列,函数满足:对于任意的实数,总有两个不同的根,则的通项公式是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设数列的前项和为,点均在函数的图像上.(Ⅰ)求数列的通项公式;(Ⅱ)设,是数列的前项和,求使得对所有都成立的最小正整数.18.已知,,,求:的值.19.已知,与的夹角为.(1)若,求;(2)若与垂直,求.20.在中,角的对边分别为,且角成等差数列.(1)求角的值;(2)若,求边的长.21.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,且∠BAP=∠CDP=90°(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=AD,且四棱锥的侧面积为6+2,求四校锥P﹣ABCD的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】试题分析:因为三点共线,所以可设,又,所以,,将它们代入,即有,由于不共线,从而有,解得,故选择D.考点:向量的基本运算及向量共线基本定理.2、C【解析】
分别求出设关于直线对称的点,关于对称的点,当共线时,的周长取得最小值,为,利用两点间的距离公式,求出答案.【详解】过两点的直线方程为设关于直线对称的点,则,解得即,同理可求关于对称的点,当共线时的周长取得最小值为.故选C.【点睛】本题主要考查了点关于直线的对称性的简单应用,试题的技巧性较强,属于中档题.3、B【解析】
由数列为等比数列,则,结合题意即可得解.【详解】解:因为数列为等比数列,设等比数列的公比为,则,又是奇数项之和的3倍,则,故选:B.【点睛】本题考查了等比数列的性质,重点考查了等比数列公比的运算,属基础题.4、A【解析】
当为正奇数时,可推出,当为正偶数时,可推出,将该数列的前项和表示为,结合前面的规律可计算出数列的前项和.【详解】当为正奇数时,由题意可得,,两式相减得;当为正偶数时,由题意可得,,两式相加得.因此,数列的前项和为.故选:A.【点睛】本题考查数列求和,找出数列的规律是解题的关键,考查推理能力,属于中等题.5、D【解析】
求出样本数据的中心,代入选项可得D是正确的.【详解】,所以这组数据的中心为,对选项逐个验证,可知只有过样本点中心.【点睛】本题没有提供最小二乘法的公式,所以试题的意图不是考查公式计算,而是要考查回归直线过样本点中心这一概念.6、A【解析】
由题意知两直线互相垂直,根据直线分别求出定点与定点,再利用基本不等式,即可得出答案。【详解】直线过定点,直线过定点,又因直线与直线互相垂直,即即,当且仅当时取等号故选A【点睛】本题考查直线位置关系,考查基本不等式,属于中档题。7、B【解析】
根据线面平行的性质解答本题.【详解】根据线面平行的性质定理,已知直线平面.
对于A,根据线面平行的性质定理,只要过直线a的平面与平面相交得到的交线,都与直线a平行;所以平面内有无数条直线与a平行;故A错误;
对于B,只要过直线a的平面与平面相交得到的交线,都与直线a平行;所以平面内有无数条直线与a平行;故B正确;
对于C,根据线面平行的性质,过直线a的平面与平面相交得到的交线,则直线,所以C错误;
对于D,根据线面平行的性质,过直线a的平面与平面相交得到的交线,则直线,则在平面内与直线相交的直线与a不平行,所以D错误;
故选:B.【点睛】本题考查了线面平行的性质定理;如果直线与平面平行,那么过直线的平面与已知平面相交,直线与交线平行.8、D【解析】
取AB中点F,SC中点E,设的外心为,外接圆半径为三棱锥的外接球球心为,由,在四边形中,设,外接球半径为,则则可求,表面积可求【详解】取AB中点F,SC中点E,连接SF,CF,因为则为二面角的平面角,即又设的外心为,外接圆半径为三棱锥的外接球球心为则面,由在四边形中,设,外接球半径为,则则三棱锥的外接球的表面积为故选D【点睛】本题考查二面角,三棱锥的外接球,考查空间想象能力,考查正弦定理及运算求解能力,是中档题9、D【解析】
根据空间中直线与平面的位置关系的相关定理依次判断各个选项即可.【详解】两平行平面内的直线的位置关系为:平行或异面,可知错误;且,此时或,可知错误;,,,此时或,可知错误;两平行线中一条垂直于一个平面,则另一条必垂直于该平面,正确.本题正确选项:【点睛】本题考查空间中直线与平面、平面与平面位置关系的判定,考查学生对于定理的掌握程度,属于基础题.10、C【解析】
直接运用斜率计算公式求解.【详解】因为直线过两点,,所以直线的斜率,故本题选C.【点睛】本题考查了斜率的计算公式,考查了数学运算能力、识记公式的能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】因为所以,即不等式的解集为.12、4.【解析】分析:通过二倍角公式化简得到,进而推断或,进而求得结果.详解:,所以或,因为,所以或或或,故解的个数是4.点睛:该题考查的是有关方程解的个数问题,在解题的过程中,涉及到的知识点有正弦的倍角公式,方程的求解问题,注意一定不要两边除以,最后求得结果.13、【解析】
由正弦定理,可得,求得,即可求解,得到答案.【详解】由正弦定理,可得,所以,又由△为锐角三角形,所以.故答案为:.【点睛】本题主要考查了正弦定理得应用,其中解答中熟记正弦定理,准确计算是解答的关键,着重考查了计算能力,属于基础题.14、;【解析】
不等式转化为,由于存在,使不等式成立,因此只要求得的最小值即可.【详解】由题意存在,使得不等式成立,当时,,其最小值为,∴.故答案为.【点睛】本题考查不等式能成立问题,解题关键是把问题转化为求函数的最值.不等式能成立与不等式恒成立问题的转化区别:在定义域上,不等式恒成立,则,不等式能成立,则,不等式恒成立,则,不等式能成立,则.转化时要注意是求最大值还是求最小值.15、【解析】
分别算出两点间的距离,共有种,构成三角形的条件为任意两边之和大于第三边,所以在这10种中找出满足条件的即可.【详解】由两点之间的距离公式,得:,,,任取三点有:,共10种,能构成三角形的有:,共6种,所求概率为:.【点睛】构成三角形必须满足任意两边之和大于第三边,则n个点共有个线段,找出满足条件的即可,属于中等难度题目.16、【解析】
利用三角函数的图象与性质、诱导公式和数列的递推公式,可得,再利用“累加”法和等差数列的前n项和公式,即可求解.【详解】由题意,因为,当时,,又因为对任意的实数,总有两个不同的根,所以,所以,又,对任意的实数,总有两个不同的根,所以,又,对任意的实数,总有两个不同的根,所以,由此可得,所以,所以.故答案为:.【点睛】本题主要考查了三角函数的图象与性质的应用,以及诱导公式,数列的递推关系式和“累加”方法等知识的综合应用,着重考查了推理与运算能力,属于中档试题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)10【解析】
解:(I)依题意得,即.当n≥2时,;当所以.(II)由(I)得,故=.因此,使得<成立的m必须满足,故满足要求的最小正整数m为10.18、【解析】
求出和的取值范围,利用同角三角函数的基本关系求出和的值,然后利用两角差的余弦公式可求出的值.【详解】,则,且,,,,,,,因此,.故答案为:.【点睛】本题考查利用两角差的余弦公式求值,解题的关键就是利用已知角来表示所求角,考查计算能力,属于中等题.19、(1);(2)【解析】
(1)根据向量共线,对向量的夹角分类讨论,利用数量积公式即可完成求解;(2)根据向量垂直得到数量积为,再根据已知条件并借助数量积公式即可计算出的值.【详解】(1)∵,∴与的夹角为或,当时,,当时,,综上所述,;(2)∵,∴,即,∵,∴,∴∵向量的夹角的范围是,∴【点睛】本题考查根据向量的平行、垂直求解向量的夹角以及向量数量积公式的运用,难度较易.注意共线向量的夹角为或.20、(1).(2)【解析】
(1)根据等差数列的性质,与三角形三内角和等于即可解出角C的值.(2)将已知数带入角C的余弦公式,即可解出边c.【详解】解:(1)∵角,,成等差数列,且为三角形的内角,∴,,∴.(2)由余弦定理,得【点睛】本题考查等差数列、余弦定理,属于基础题.21、(1)见解析;(2)【解析】
(1)只需证明平面,,即可得平面平面平面;(2)设,则,由四棱锥的侧面积,取得,在平面内作,垂足为.可得平面且,即可求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 艺人明星形象代言肖像权使用合同范本
- 城市简装修房地产出售合同范本
- 亮化建设工程施工劳务合同范本
- 电子商务平台运营技巧与案例分析
- 科技产品的用户教育与信息传递策略
- Unit 2 Being a good language learner Reading Further 教学设计-2024-2025学年高中英语重大版(2019)必修第一册
- Unit8Dolls(教学设计)-2024-2025学年译林版(三起)英语四年级上册
- 浙江省八年级历史与社会上册(人教)3.4《开疆拓土与对外交流》 教学设计2
- 浙教版高中信息技术必修1教学设计-7.3 信息的安全和保护
- 中介意向合同(3篇)
- 最新2022年减肥食品市场现状与发展趋势预测
- 材料化学合成与制备技术
- DB23∕T 343-2003 国有林区更新造林技术规程
- 发展汉语初级综合1:第30课PPT课件[通用]
- 马工程西方经济学(第二版)教学课件-(4)
- 医疗废物管理组织机构架构图
- cjj/t135-2009《透水水泥混凝土路面技术规程》
- 短时耐受电流
- 社保人事专员绩效考核表
- 杭州育才小升初数学试卷(共4页)
- 旋挖桩主要施工方法及技术措施(全护筒)
评论
0/150
提交评论