2024届青海师大二附中数学高一下期末考试试题含解析_第1页
2024届青海师大二附中数学高一下期末考试试题含解析_第2页
2024届青海师大二附中数学高一下期末考试试题含解析_第3页
2024届青海师大二附中数学高一下期末考试试题含解析_第4页
2024届青海师大二附中数学高一下期末考试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届青海师大二附中数学高一下期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆心为的圆与圆相外切,则圆的方程为()A. B.C. D.2.若干个人站成一排,其中为互斥事件的是()A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”3.若点在点的北偏东70°,点在点的南偏东30°,且,则点在点的()方向上.A.北偏东20° B.北偏东30° C.北偏西30° D.北偏西15°4.已知,,,,那么()A. B. C. D.5.下列三角方程的解集错误的是()A.方程的解集是B.方程的解集是C.方程的解集是D.方程(是锐角)的解集是6.两数1,25的等差中项为()A.1 B.13 C.5 D.7.已知a,,若关于x的不等式的解集为,则()A. B. C. D.8.函数的图象如图所示,为了得到的图象,可将的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位9.已知在角终边上,若,则()A. B.-2 C.2 D.10.若直线xa+yb=1(a>0,b>0)A.3 B.4 C.3+22 D.二、填空题:本大题共6小题,每小题5分,共30分。11.若、是方程的两根,则__________.12.已知数列是等比数列,公比为,且,,则_________.13.数列的前项和,则的通项公式_____.14.若当时,不等式恒成立,则实数a的取值范围是_____.15.函数的最小正周期___________.16.设满足约束条件,则目标函数的最大值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前n项和为,,.(1)证明:数列为等比数列;(2)证明:.18.已知函数(1)求的定义域;(2)设是第三象限角,且,求的值.19.已知圆经过、、三点.(1)求圆的标准方程;(2)若过点的直线被圆截得的弦的长为,求直线的倾斜角.20.如图,已知以点为圆心的圆与直线相切.过点的动直线与圆A相交于M,N两点,Q是的中点,直线与相交于点P.(1)求圆A的方程;(2)当时,求直线的方程.21.某校举行汉字听写比赛,为了了解本次比赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:组号分组频数频率第1组[50,60)50.05第2组[60,70)0.35第3组[70,80)30第4组[80,90)200.20第5组[90,100]100.10合计1001.00(Ⅰ)求的值;(Ⅱ)若从成绩较好的第3、4、5组中按分层抽样的方法抽取6人参加市汉字听写比赛,并从中选出2人做种子选手,求2人中至少有1人是第4组的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

求出圆的圆心坐标和半径,利用两圆相外切关系,可以求出圆的半径,求出圆的标准方程,最后化为一般式方程.【详解】设的圆心为A,半径为r,圆C的半径为R,,所以圆心A坐标为,半径r为3,圆心距为,因为两圆相外切,所以有,故圆的标准方程为:,故本题选A.【点睛】本题考查了圆与圆的相外切的性质,考查了已知圆的方程求圆心坐标和半径,考查了数学运算能力.2、A【解析】

根据不能同时发生的两个事件,叫互斥事件,依次判断.【详解】根据互斥事件不能同时发生,判断A是互斥事件;B、C、D中两事件能同时发生,故不是互斥事件;

故选A.【点睛】本题考查了互斥事件的定义.是基础题.3、A【解析】

作出方位角,根据等腰三角形的性质可得.【详解】如图,,,则,∵,∴,而,∴∴点在点的北偏东20°方向上.故选:A.【点睛】本题考查方位角概念,掌握方位角的定义是解题基础.方位角是以南北向为基础,北偏东,北偏西,南偏东,南偏西等等.4、C【解析】由于故,故,所以.由于,由于,所以,故.综上所述选.5、B【解析】

根据余弦函数的性质可判断B是错误的.【详解】因为,故无解,故B错.对于A,的解集为,故A正确.对于C,的解集是,故C正确.对于D,,.因为为锐角,,所以或或,所以或或,故D正确.故选:B.【点睛】本题考查三角方程的解,注意对于三角方程,我们需掌握有解的条件和其通解公式,而给定范围上的解,需结合整体的范围来讨论,本题属于基础题.6、B【解析】

直接利用等差中项的公式求解.【详解】由题得两数1,25的等差中项为.故选:B【点睛】本题主要考查等差中项的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.7、D【解析】

由不等式的解集为R,得的图象要开口向上,且判别式,即可得到本题答案.【详解】由不等式的解集为R,得函数的图象要满足开口向上,且与x轴至多有一个交点,即判别式.故选:D【点睛】本题主要考查一元二次不等式恒成立问题.8、A【解析】

函数过代入解得,再通过平移得到的图像.【详解】,函数过向右平移个单位得到的图象故答案选A【点睛】本题考查了三角函数图形,求函数表达式,函数平移,意在考查学生对于三角函数图形的理解.9、C【解析】

由正弦函数的定义求解.【详解】,显然,∴.故选C.【点睛】本题考查正弦函数的定义,属于基础题.解题时注意的符号.10、C【解析】

将1,2代入直线方程得到1a+2【详解】将1,2代入直线方程得到1a+b=(a+b)(当a=2故答案选C【点睛】本题考查了直线方程,均值不等式,1的代换是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由题意利用韦达定理求得、的值,再利用两角差的正切公式,求得要求式子的值.【详解】解:、是方程的两根,,,,或,,则,故答案为:.【点睛】本题主要考查韦达定理,两角差的正切公式,属于基础题.12、.【解析】

先利用等比中项的性质计算出的值,然后由可求出的值.【详解】由等比中项的性质可得,得,所以,,,故答案为.【点睛】本题考查等比数列公比的计算,充分利用等比中项和等比数列相关性质的应用,可简化计算,属于中等题.13、【解析】

根据和之间的关系,应用公式得出结果【详解】当时,;当时,;∴故答案为【点睛】本题考查了和之间的关系式,注意当和时要分开讨论,题中的数列非等差数列.本题属于基础题14、【解析】

用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值.【详解】设,是增函数,当时,,不等式化为,即,不等式在上恒成立,时,显然成立,,对上恒成立,由对勾函数性质知在是减函数,时,,∴,即.综上,.故答案为:.【点睛】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值.15、【解析】

利用两角和的正弦公式化简函数表达式,由此求得函数的最小正周期.【详解】依题意,故函数的周期.故填:.【点睛】本小题主要考查两角和的正弦公式,考查三角函数最小正周期的求法,属于基础题.16、7【解析】

首先画出可行域,然后判断目标函数的最优解,从而求出目标函数的最大值.【详解】如图,画出可行域,作出初始目标函数,平移目标函数,当目标函数过点时,目标函数取得最大值,,解得,.故填:7.【点睛】本题考查了线性规划问题,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解析】

(1)将已知递推式取倒数得,,再结合等比数列的定义,即可得证;(2)由(1)得,再利用基本不等式以及放缩法和等比数列的求和公式,结合不等式的性质,即可得证.【详解】(1),,可得,即有,可得数列为公比为2,首项为2的等比数列;(2)由(1)可得,即,由基本不等式可得,,即有.【点睛】本题考查等比数列的定义和通项公式、求和公式、考查构造数列法以及放缩法的运用,考查化简运算能力和推理能力,属于中档题.18、(1)(2)【解析】

(1)由分母不为0可求得排烟阀;(2)由同角间的三角函数关系求得,由两角差的余弦公式展开,再由二倍角公式化为单角的函数,最后代入的值可得.【详解】(1)由得,,所以,,故的定义域为(答案写成“”也正确)(2)因为,且是第三象限角,所以由可解得,.故.【点睛】本题考查三角函数的性质,考查同角间的三角函数关系,考查应用两角差的余弦公式和二倍角公式求值.三角函数求值时一般要先化简再求值,这样计算可以更加简便,保证正确.19、(1);(2)或.【解析】

(1)设出圆的一般方程,然后代入三个点的坐标,联立方程组可解得;(2)讨论直线的斜率是否存在,根据点到直线的距离和勾股定理列式可得直线的倾斜角.【详解】(1)设圆的一般方程为,将点、、的坐标代入圆的方程得,解得,所以,圆的一般方程为,标准方程为;(2)设圆心到直线的距离为,则.①当直线的斜率不存在时,即直线到圆心的距离为,满足题意,此时直线的倾斜角为;②当直线的斜率存在时,设直线的方程为,即,则圆心到直线的距离为,解得,此时,直线的倾斜角为.综上所述,直线的倾斜角为或.【点睛】本题考查圆的方程的求解,同时也考查了利用直线截圆的弦长求直线的倾斜角,一般转化为求圆心到直线的距离,并结合点到直线的距离公式以及勾股定理列等式求解,考查计算能力,属中档题.20、(1).(2)或【解析】

(1)圆心到切线的距离等于圆的半径,从而易得圆标准方程;(2)考虑直线斜率不存在时是否符合题意,在斜率存在时,设直线方程为,根据垂径定理由弦长得出圆心到直线的距离,现由点(圆心)到直线的距离公式可求得.【详解】(1)由于圆A与直线相切,∴,∴圆A的方程为.(2)①当直线与x轴垂直时,易知与题意相符,使.②当直线与x轴不垂直时,设直线的方程为即,连接,则,∵,∴,由,得.∴直线,故直线的方程为或.【点睛】本题考查直线与圆的位置关系,解题关键是垂径定理的应用,在圆中与弦长有关的问题通常都是用垂径定理解决.21、(1)35,0.30;(2).【解析】试题分析:(Ⅰ)直接利用频率和等于1求出b,用样本容量乘以频率求a的值;(Ⅱ)由分层抽样方法求出所抽取的6人中第三、第四、第五组的学生数,利用列举法写出从中任意抽取2人的所有方法种数,查出2人至少1人来自第四组的事件个数,然后利用古典概型的概率计算公式求解.试题解析:(Ⅰ)a=100-5-30-20-10=35,b=1-0.05-0.35-0.20-0.10=0.30(Ⅱ)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组分别为,第3组:×30=3人,第4组:×20=2人,第5组:×10=1人,所以第3、4、5组应分别抽取3人、2人、1人设第3组的3位同学为A1、A2、A3,第4组的2位同学为B1、B2,第5组的1位同学为C1,则从6位同学中抽2位同学有15种可能,如下:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论