




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京市南京师大附中2024届高一下数学期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数(,)的部分图像如图所示,则的值分别是()A. B.C. D.2.为了得到函数的图象,只需把函数的图象上所有点的()A.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向左平移.B.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向左平移.C.横坐标伸长到原来的2倍(纵坐标不变),再将所得的图像向左平移.D.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向右平移.3.函数的部分图象如图所示,函数,则下列结论正确的是()A.B.函数与的图象均关于直线对称C.函数与的图象均关于点对称D.函数与在区间上均单调递增4.已知非零向量与的夹角为,且,则()A.1 B.2 C. D.5.如果数据的平均数为,方差为,则的平均数和方差分别为()A. B. C. D.6.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A. B. C. D.7.已知,,下列不等式成立的是()A. B.C. D.8.甲、乙、丙三人随机排成一排,乙站在中间的概率是()A. B. C. D.9.棱柱的侧面一定是()A.平行四边形 B.矩形 C.正方形 D.菱形10.若直线与直线平行,则实数A.0 B.1 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若数列满足,,则______.12.将边长为1的正方形中,把沿对角线AC折起到,使平面⊥平面ABC,则三棱锥的体积为________.13.已知角的终边经过点,则______.14.在中,若,点,分别是,的中点,则的取值范围为___________.15.长时间的低头,对人的身体如颈椎、眼睛等会造成定的损害,为了了解某群体中“低头族”的比例,现从该群体包含老、中、青三个年龄段的人中采用分层抽样的方法抽取人进行调查,已知这人里老、中、青三个年龄段的分配比例如图所示,则这个群体里青年人人数为_____16.函数的最小正周期是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知矩形中,,,M是以为直径的半圆周上的任意一点(与C,D均不重合),且平面平面.(1)求证:平面平面;(2)当四棱锥的体积最大时,求与所成的角18.近期,某公交公司分别推出支付宝和徽信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次(单位:十人次),统计数据如表l所示:表1根据以上数据,绘制了如右图所示的散点图.(1)根据散点图判断,在推广期内,y=a+bx与(2)根据(1)的判断结果及表1中的数据,求y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次;参考数据:其中υ参考公式:对于一组数据u1,υ1,19.正方体的棱长为点分别是棱的中点(1)证明:四边形是一个梯形:(2)求几何体的表面积和体积20.将边长分别为、、、…、、、…的正方形叠放在一起,形成如图所示的图形,由小到大,依次记各阴影部分所在的图形为第个、第个、……、第个阴影部分图形.设前个阴影部分图形的面积的平均值为.记数列满足,(1)求的表达式;(2)写出,的值,并求数列的通项公式;(3)定义,记,且恒成立,求的取值范围.21.已知,函数,.(1)若在上单调递增,求正数的最大值;(2)若函数在内恰有一个零点,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
通过函数图像可计算出三角函数的周期,从而求得w,再代入一个最低点即可得到答案.【详解】,,又,,,又,,故选B.【点睛】本题主要考查三角函数的图像,通过周期求得w是解决此类问题的关键.2、B【解析】
利用三角函数的平移和伸缩变换的规律求出即可.【详解】为了得到函数的图象,先把函数图像的纵坐标不变,横坐标缩短到原来的倍到函数y=3sin2x的图象,再把所得图象所有的点向左平移个单位长度得到y=3sin(2x+)的图象.故选:B.【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,正弦型函数性质的应用,三角函数图象的平移变换和伸缩变换的应用,属于基础题.3、D【解析】
由三角函数图像可得,,再结合三角函数图像的性质逐一判断即可得解.【详解】解:由函数的部分图象可得,,即,则,又函数图像过点,则,即,又,即,即,则对于选项A,显然错误;对于选项B,函数的图像关于直线对称,即B错误;对于选项C,函数的图像关于点对称,即C错误;对于选项D,函数的增区间为,函数的增区间为,又,,即D正确,故选:D.【点睛】本题考查了利用三角函数图像求函数解析式,重点考查了三角函数图像的性质,属中档题.4、B【解析】
根据条件可求出,从而对两边平方即可得出,解出即可.【详解】向量与的夹角为,且;;;;或0(舍去);.故选:.【点睛】本题主要考查了向量数量积的定义及数量积的运算公式,属于中档题.5、D【解析】
根据平均数和方差的公式,可推导出,,,的平均数和方差.【详解】因为,所以,所以的平均数为;因为,所以,故选:D.【点睛】本题考查平均数与方差的公式计算,考查对概念的理解与应用,考查基本运算求解能力.6、C【解析】
根据题意可知所求的球为正四棱柱的外接球,根据正四棱柱的特点利用勾股定理可求得外接球半径,代入球的体积公式求得结果.【详解】由题意可知所求的球为正四棱柱的外接球底面正方形对角线长为:外接球半径外接球体积本题正确选项:【点睛】本题考查正棱柱外接球体积的求解问题,关键是能够根据正棱柱的特点确定球心位置,从而利用勾股定理求得外接球半径.7、A【解析】
由作差法可判断出A、B选项中不等式的正误;由对数换底公式以及对数函数的单调性可判断出C选项中不等式的正误;利用指数函数的单调性可判断出D选项中不等式的正误.【详解】对于A选项中的不等式,,,,,,,,A选项正确;对于B选项中的不等式,,,,,,,B选项错误;对于C选项中的不等式,,,,,,,即,C选项错误;对于D选项中的不等式,,函数是递减函数,又,所以,D选项错误.故选A.【点睛】本题考查不等式正误的判断,常见的比较大小的方法有:(1)比较法;(2)中间值法;(3)函数单调性法;(4)不等式的性质.在比较大小时,可以结合不等式的结构选择合适的方法来比较,考查推理能力,属于中等题.8、B【解析】
先求出甲、乙、丙三人随机排成一排的基本事件的个数,再求出乙站在中间的基本事件的个数,再求概率即可.【详解】解:三个人排成一排的所有情况有:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙乙甲,丙甲乙共6种,乙在中间有2种,所以乙在中间的概率为,故选B.【点睛】本题考查了古典概型,属基础题.9、A【解析】根据棱柱的性质可得:其侧面一定是平行四边形,故选A.10、B【解析】
根据两直线的平行关系,列出方程,即可求解实数的值,得到答案.【详解】由题意,当时,显然两条直线不平行,所以;由两条直线平行可得:,解得,当时,直线方程分别为:,,显然平行,符合题意;当时,直线方程分别为,,很显然两条直线重合,不合题意,舍去,所以,故选B.【点睛】本题主要考查了两直线的位置关系的应用,其中解答中熟记两直线平行的条件,准去计算是解答的关键,着重考查了运算与求解能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用递推公式再递推一步,得到一个新的等式,两个等式相减,再利用累乘法可求出数列的通项公式,利用所求的通项公式可以求出的值.【详解】得,,所以有,因此.故答案为:【点睛】本题考查了利用递推公式求数列的通项公式,考查了累乘法,考查了数学运算能力.12、【解析】
由面面垂直的性质定理可得面,再结合三棱锥的体积的求法求解即可.【详解】解:取中点,连接,因为四边形为边长为1的正方形,则,即,又平面⊥平面ABC,由面面垂直的性质定理可得:面,且,则,故答案为:.【点睛】本题考查了三棱锥的体积的求法,重点考查了面面垂直的性质定理,属中档题.13、【解析】由题意,则.14、【解析】
记,,,根据正弦定理得到,再由题意,得到,,推出,再由题意,确定的范围,即可得出结果.【详解】记,,,由得,所以,即,因此,因为,分别是,的中点,所以,同理:,所以,因为且,所以,则,所以,则,所以.即的取值范围为.故答案为【点睛】本题主要考查解三角形,熟记正弦定理,以及两角和的正弦公式即可,属于常考题型.15、【解析】
根据饼状图得到青年人的分配比例;利用总数乘以比例即可得到青年人的人数.【详解】由饼状图可知青年人的分配比例为:这个群体里青年人的人数为:人本题正确结果:【点睛】本题考查分层抽样知识的应用,属于基础题.16、;【解析】
利用余弦函数的最小正周期公式即可求解.【详解】因为函数,所以,故答案为:【点睛】本题考查了含余弦函数的最小正周期,需熟记求最小正周期的公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】
(1)证明,得到平面,得到答案.(2)过点M作于点E,当M为半圆弧的中点时,四棱锥的体积最大,作于F,连接,与所成的角即与所成的角,计算得到答案.【详解】(1)为直径,,已知平面平面,.平面,所以,又,平面,又平面,∴平面平面.(2)过点M作于点E,∵平面平面,平面,即为四棱锥的高,又底面面积为定值.所以当M为半圆弧的中点时,四棱锥的体积最大.作于F,连接,,与所成的角即与所成的角.在直角中,,,所以.,故与所成的角为.【点睛】本题考查了面面垂直,体积的最值,异面直线夹角,意在考查学生的空间想象能力和计算能力.18、(1)y=c⋅dx【解析】
(1)根据散点图判断,y=c⋅dx适宜;(2)y=c⋅dx,两边同时取常用对数得:【详解】(1)根据散点图判断,y=c⋅dx适宜作为扫码支付的人数y关于活动推出天数(2)∵y=c⋅dx,两边同时取常用对数得:1gy=1g(c⋅d设1gy=v,∴v=1gc+1gd⋅x∵x=4,v∴lgd=把样本中心点(4,1.54)代入v=1gc+1gd⋅x,得:∴v=0.54+0.25x,∴y关于x的回归方程式:y=把x=8代入上式,y=3.47×活动推出第8天使用扫码支付的人次为3470;【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与Y之间的关系,这条直线过样本中心点.线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的,线性回归方程得到的预测值是预测变量的估计值,不是准确值.19、(1)证明见解析(2)表面积为,体积为【解析】
(1)在正方体中,根据分别是棱的中点,由中位线得到且,又由,根据公理4平行关系的传递性得证.(2)几何体的表面积,上下底是直角三角形,三个侧面,有两个是全等的直角梯形,另一个是等腰梯形求解,体积按照棱台体积公式求解.【详解】(1)如图所示:在正方体中,因为分别是棱的中点,所以且,又因为,所以且,所以四边形是一个梯形.(2)几何体的表面积为:.体积为:.【点睛】本题主要考查几何体中的截面问题,还考查了空间想象,抽象概括,推理论证的能力,属于中档题.20、(1);(2),,;(3).【解析】
(1)根据题意,分别求出每一个阴影部分图形的面积,即可得到前个阴影部分图形的面积的平均值;(2)依据递推式,结合分类讨论思想,即可求出数列的通项公式;(3)先求出的表达式,再依题意得到,分类讨论不等式恒成立的条件,取其交集,即得所求范围。【详解】(1)由题意有,第一个阴影部分图形面积是:;第二个阴影部分图形面积是:;第三个阴影部分图形面积是:;所以第个阴影部分图形面积是:;故;(2)由(1)知,,,所以,,当时,当时,,综上,数列的通项公式为,。(3)由(2)知,,,由题意可得,恒成立,①当时,,即,所以,②当时,,即,所以,③当时,,即,所以,综上,。【点睛】本题主要考查数列的通项公式求法,数列不等式恒成立问题的解法以及分类讨论思想的运用,意在考查学生逻辑推理能力及运算能力。21、(1)(2)【解析】
(1)求出的单调递增区间,令,得,可知区间,即可求出正数的最大值;(2)令,当时,,可将问题转化为在的零点问题,分类讨论即可求出答案.【详解】解:(1)由,得,.因为在上单调递增,令,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论