2024届青海省西宁第二十一中学高一下数学期末质量跟踪监视模拟试题含解析_第1页
2024届青海省西宁第二十一中学高一下数学期末质量跟踪监视模拟试题含解析_第2页
2024届青海省西宁第二十一中学高一下数学期末质量跟踪监视模拟试题含解析_第3页
2024届青海省西宁第二十一中学高一下数学期末质量跟踪监视模拟试题含解析_第4页
2024届青海省西宁第二十一中学高一下数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届青海省西宁第二十一中学高一下数学期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图是某几何体的三视图,则该几何体的外接球的表面积是()A. B. C. D.2.已知直线平面,直线平面,下列四个命题中正确的是().()()()()A.()与() B.()与() C.()与() D.()与()3.“φ=”是“函数y=sin(x+φ)为偶函数的”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.函数的大致图像是下列哪个选项()A. B.C. D.5.在四边形中,,,将沿折起,使平面平面,构成三棱锥,如图,则在三棱锥中,下列结论正确的是()A.平面平面B.平面平面C.平面平面D.平面平面6.已知,则点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.甲、乙两名运动员分别进行了5次射击训练,成绩如下:甲:7,7,8,8,1;乙:8,9,9,9,1.若甲、乙两名运动员的平均成绩分别用,表示,方差分别用,表示,则()A., B.,C., D.,8.如图,飞机的航线和山顶在同一个铅垂平面内,已知飞机的高度为海拔20000m,速度为900km/h,飞行员先看到山顶的俯角为30∘,经过80s后又看到山顶的俯角为75A.5000(3+1)C.5000(3-3)9.对于空间中的两条直线,和一个平面,下列结论正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则10.下列正确的是()A.若a,b∈R,则B.若x<0,则x+≥-2=-4C.若ab≠0,则D.若x<0,则2x+2-x>2二、填空题:本大题共6小题,每小题5分,共30分。11.在数列中,,,,则_____________.12.方程的解集为____________.13.已知圆锥的顶点为,母线,所成角的余弦值为,与圆锥底面所成角为45°,若的面积为,则该圆锥的侧面积为__________.14.在中,,是边上一点,且满足,若,则_________.15.已知向量,的夹角为°,,,则______.16.经过点且在x轴上的截距等于在y轴上的截距的直线方程是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.的内角所对边分别为,已知.(1)求;(2)若,,求的面积.18.正项数列:,满足:是公差为的等差数列,是公比为2的等比数列.(1)若,求数列的所有项的和;(2)若,求的最大值;(3)是否存在正整数,满足?若存在,求出的值;若不存在,请说明理由.19.已知函数的图象向左平移个单位长度后与函数图象重合.(1)求和的值;(2)若函数,求函数的单调递减区间及图象的对称轴方程.20.解下列三角方程:(1);(2).21.已知以点(a∈R,且a≠0)为圆心的圆过坐标原点O,且与x轴交于点A,与y轴交于点B.(1)求△OAB的面积;(2)设直线l:y=﹣2x+4与圆C交于点P、Q,若|OP|=|OQ|,求圆心C到直线l的距离.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

由三视图还原几何体,可知该几何体是由边长为的正方体切割得到的四棱锥,可知所求外接球即为正方体的外接球,通过求解正方体外接球半径,代入球的表面积公式可得到结果.【详解】由三视图可知,几何体为如下图所示的四棱锥:由上图可知:四棱锥可由边长为的正方体切割得到该正方体的外接球即为四棱锥的外接球四棱锥的外接球半径外接球的表面积故选:【点睛】本题考查棱锥外接球表面积的求解问题,关键是能够通过三视图还原几何体,并将几何体放入正方体中,通过求解正方体的外接球表面积得到结果;需明确正方体外接球表面积为其体对角线长的一半.2、D【解析】

∵直线l⊥平面α,若α∥β,则直线l⊥平面β,又∵直线m⊂平面β,∴l⊥m,即(1)正确;∵直线l⊥平面α,若α⊥β,则l与m可能平行、异面也可能相交,故(2)错误;∵直线l⊥平面α,若l∥m,则m⊥平面α,∵直线m⊂平面β,∴α⊥β;故(3)正确;∵直线l⊥平面α,若l⊥m,则m∥α或m⊂α,则α与β平行或相交,故(4)错误;故选D.3、A【解析】试题分析:当时,时,是偶函数,当是偶函数时,,所以不能推出是,所以是充分不必要条件,故选A.考点:三角函数的性质4、B【解析】

化简,然后作图,值域小于部分翻折关于轴对称即可.【详解】,的图象与关于轴对称,将部分向上翻折,图象变化过程如下:轴上方部分图形即为所求图象.故选:B.【点睛】本题主要考查图形的对称变化,掌握关于轴对称是解决问题的关键.属于中档题.5、D【解析】

折叠过程中,仍有,根据平面平面可证得平面,从而得到正确的选项.【详解】在直角梯形中,因为为等腰直角三角形,故,所以,故,折起后仍然满足.因为平面平面,平面,平面平面,所以平面,因平面,所以.又因为,,所以平面,因平面,所以平面平面.【点睛】面面垂直的判定可由线面垂直得到,而线面垂直可通过线线垂直得到,注意面中两条直线是相交的.由面面垂直也可得到线面垂直,注意线在面内且线垂直于两个平面的交线.6、B【解析】∵,∴,,,∴,∴点在第二象限,故选B.点睛:本题主要考查了由三角函数值的符号判断角的终边位置,属于基础题;三角函数值符号记忆口诀记忆技巧:一全正、二正弦、三正切、四余弦(为正).即第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.7、D【解析】

分别计算出他们的平均数和方差,比较即得解.【详解】由题意可得,,,.故,.故选D【点睛】本题主要考查平均数和方差的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.8、C【解析】分析:先求AB的长,在△ABC中,可求BC的长,进而由于CD⊥AD,所以CD=BCsin∠CBD,故可得山顶的海拔高度.详解:如图,∠A=30°,∠ACB=45°,

AB=900×80×13600∴在△ABC中,BC=102∵CD⊥AD,=102sin30点睛:本题以实际问题为载体,考查正弦定理的运用,关键是理解俯角的概念,属于基础题.9、C【解析】

依次分析每个选项中两条直线与平面的位置关系,确定两条直线的位置关系即可.【详解】平行于同一平面的两条直线不一定相互平行,故选项A错误,平行于平面的直线不一定与该平面内的直线平行,故选项B错误,垂直于平面的直线,垂直于与该平面平行的所有线,故选项C正确,垂直于同一平面的两条直线相互平行,故选项D错误.故选:C.【点睛】本题考查了直线与平面位置关系的辨析,属于基础题.10、D【解析】对于A,当ab<0时不成立;对于B,若x<0,则x+=-≤-2=-4,当且仅当x=-2时,等号成立,因此B选项不成立;对于C,取a=-1,b=-2,+=-<a+b=-3,所以C选项不成立;对于D,若x<0,则2x+2-x>2成立.故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】

利用递推关系式依次求值,归纳出:an+6=an,再利用数列的周期性,得解.【详解】∵a1=1,a2=5,an+2=an+1-an(n∈N*),∴a3=a2-a1=5-1=4,同理可得:a4=-1,a5=-5,a6=-4,a7=1,a8=5,…,∴an+6=an.则a2018=a6×336+2=a2=5【点睛】本题考查了递推关系、数列的周期性,考查了推理能力与计算能力.12、或【解析】

首先将原方程利用辅助角公式化简为,再求出的值即可.【详解】由题知:,,.所以或,.解得:或.所以解集为:或.故答案为:或【点睛】本题主要考查正弦函数的图像及特殊角的三角函数值,同时考查了辅助角公式,属于中档题.13、【解析】

分析:先根据三角形面积公式求出母线长,再根据母线与底面所成角得底面半径,最后根据圆锥侧面积公式求结果.详解:因为母线,所成角的余弦值为,所以母线,所成角的正弦值为,因为的面积为,设母线长为所以,因为与圆锥底面所成角为45°,所以底面半径为因此圆锥的侧面积为14、【解析】

记,则,则可求出,设,,得,,故结合余弦定理可得,解得的值,即可求,进而求的值.【详解】根据题意,不妨设,,则,因,所以,设,由,得,又,所以,故由余弦定理可得,即,整理得:,即,所以,所以,所以,故答案为:.【点睛】本题主要考查了余弦定理在解三角形中的综合应用以及同角三角函数的基本关系式,属于中档题.15、1【解析】

把向量,的夹角为60°,且,,代入平面向量的数量积公式,即可得到答案.【详解】由向量,的夹角为°,且,,则.故答案为1【点睛】本题考查了平面向量数量积的坐标表示,直接考查公式本身的直接应用,属于基础题.16、或【解析】

当直线不过原点时,设直线的方程为,把点代入求得的值,即可求得直线方程,当直线过原点时,直线的方程为,综合可得答案.【详解】当直线不过原点时,设直线的方程为,把点代入可得:,即此时直线的方程为:当直线过原点时,直线的方程为,即综上可得:满足条件的直线方程为:或故答案为:或【点睛】过原点的直线横纵截距都为0,在解题的时候容易漏掉.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)5.【解析】

(1)根据正弦定理得,化简即得C的值;(2)先利用余弦定理求出a的值,再求的面积.【详解】(1)因为,根据正弦定理得,又,从而,由于,所以.(2)根据余弦定理,而,,,代入整理得,解得或(舍去).故的面积为.【点睛】本题主要考查正弦余弦定理解三角形,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(1)84;(2)1033;(3)存在,【解析】

(1)由题意可得:,即为:2,4,6,8,10,12,14,16,8,4;可得的值;(2)由题意可得,故有;即,即必是2的整数幂,要最大,必需最大,,可得出的最大值;(3)由是公差为的等差数列,是公比为2的等比数列,可得与,可得k与m的方程,一一验算k的值可得答案.【详解】解:(1)由已知,故为:2,4,6,8,10,12,14,16;公比为2,则对应的数为2,4,8,16,从而即为:2,4,6,8,10,12,14,16,8,4;此时(2)是首项为2,公差为2的等差数列,故,从而,而首项为2,公比为2的等比数列且,故有;即,即必是2的整数幂又,要最大,必需最大,,故的最大值为,所以,即的最大值为1033(3)由数列是公差为的等差数列知,,而是公比为2的等比数列,则,故,即,又,,则,即,则,即显然,则,所以,将,代入验证知,当时,上式右端为8,等式成立,此时,综上可得:当且仅当时,存在满足等式【点睛】本题主要考查等差数列、等比数列的通项公式及等差数列、等比数列前n项的和,属于难题,注意灵活运用各公式解题与运算准确.19、(1),;(2)减区间为,对称轴方程为【解析】

(1)先根据平移后周期不变求得,再根据三角函数的平移方法求得即可.(2)根据(1)中,代入可得,利用辅助角公式求得,再代入调递减区间及图象的对称轴方程求解即可.【详解】(1)因为函数的图象向左平移个单位长度后与函数图象重合,所以.所以,因为,所以.(2)由(1),,所以,.令,解得所以函数的单调递减区间为.令,可得图象的对称轴方程为.【点睛】本题主要考查了三角函数的平移运用以及辅助角公式.同时也考查了根据三角函数的解析式求解单调区间以及对称轴等方法.属于中档题.20、(1);(2)或.【解析】

(1)先将等式变形为,并利用两角和的余弦公式得出,即可得出,即可得出该方程的解;(2)由,将该方程变形为,求出的值,即可求出该方程的解.【详解】(1),,即,,解得;(2),整理得,即,,得或,解得;解,得.因此,原方程的解为或.【点睛】本题考查三角方程的求解,对等式进行化简变形是计算的关键,考查运算求解能力,属于中等题.21、(1)4(2)【解析】

(1)求得圆的半径,设出圆的标准方程,由此求得两点坐标,进而求得三角形的面积.(2)根据,判断出,由直线的斜率求得直线的斜率,以此列方程求得,根据直线和圆相交,圆心到直线的距离小于半径,确定,同时得到圆心到直线的距离.【详解】(1)根据题意,以点(a∈R,且a≠0)为圆心的圆过坐标原点O,设圆C的半径为r,则r2=a2,圆C的方程为(x﹣a)2+(y)2=a2,令x=0可得:y=0或,则B(0,),令y=0可得:x=0或2a,则A(2a,0),△OAB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论