版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年山东省博兴县第一中学高一数学第二学期期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,正方体的棱长为1,线段上有两个动点E、F,且,则下列结论中错误的是A.B.C.三棱锥的体积为定值D.2.已知在中,为的中点,,,点为边上的动点,则最小值为()A.2 B. C. D.-23.若,则与夹角的余弦值为()A. B. C. D.14.在天气预报中,有“降水概率预报”,例如预报“明天降水的概率为”,这是指()A.明天该地区有的地方降水,有的地方不降水B.明天该地区有的时间降水,其他时间不降水C.明天该地区降水的可能性为D.气象台的专家中有的人认为会降水,另外有的专家认为不降水5.若,,则与向量同向的单位向量是()A. B. C. D.6.在中,分别是角的对边,,则角为()A. B. C. D.或7.已知平面向量,,且,则实数的值为()A. B. C. D.8.函数的最大值为()A. B. C. D.9.在锐角三角形中,,,分别为内角,,的对边,已知,,,则的面积为()A. B. C. D.10.已知,下列不等式中成立的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,已知六棱锥的底面是正六边形,平面,,给出下列结论:①;②直线平面;③平面平面;④异面直线与所成角为;⑤直线与平面所成角的余弦值为.其中正确的有_______(把所有正确的序号都填上)12.过点直线与轴的正半轴,轴的正半轴分别交于、两点,为坐标原点,当最小时,直线的一般方程为______.13.已知等比数列的前项和为,,则的值是__________.14.已知函数fx=cosx+2cosx,15.一圆柱的侧面展开图是长、宽分别为3、4的矩形,则此圆柱的侧面积是________.16.某中学初中部共有名老师,高中部共有名教师,其性别比例如图所示,则该校女教师的人数为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数在同一个周期内,当时,取最大值1,当时,取最小值-1.(1)求函数的单调递减区间.(2)若函数满足方程,求在内的所有实数根之和.18.已知,.求和的值.19.已知cosα=,sin(α-β)=,且α,β∈(0,).求:(1)cos(α-β)的值;(2)β的值.20.已知直线,,是三条不同的直线,其中.(1)求证:直线恒过定点,并求出该点的坐标;(2)若以,的交点为圆心,为半径的圆与直线相交于两点,求的最小值.21.如图,在正方体中,是的中点.(1)求证:平面;(2)求证:平面平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】可证,故A正确;由∥平面ABCD,可知,B也正确;连结BD交AC于O,则AO为三棱锥的高,,三棱锥的体积为为定值,C正确;D错误。选D。2、C【解析】
由,结合投影几何意义,建立平面直角坐标系,结合向量数量积的定义及二次函数的性质即可求解.【详解】由,结合投影几何意义有:过点作的垂线,垂足落在的延长线上,且,以所在直线为轴,以中点为坐标原点,建立如图所示的平面直角坐标系,则设,其中则解析式是关于的二次函数,开口向上,对称轴时取得最小值,当时取得最小值故选:【点睛】本题考查向量方法解决几何最值问题,属于中等题型.3、A【解析】
根据向量的夹角公式,准确运算,即可求解,得到答案.【详解】由向量,则与夹角的余弦值为,故选A.【点睛】本题主要考查了向量的夹角公式的应用,其中解答中熟记向量的夹角公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.4、C【解析】
预报“明天降水的概率为”,属于随机事件,可能下雨,也可能不下雨,即可得到答案.【详解】由题意,天气预报中,有“降水概率预报”,例如预报“明天降水的概率为”,这是指明天下雨的可能性是,故选C.【点睛】本题主要考查了随机事件的概念及其概率,其中正确理解随机事件的概率的概念是解答此类问题的关键,着重考查了分析问题和解答问题的能力,属于基础题.5、A【解析】
先求出的坐标,然后即可算出【详解】因为,所以所以与向量同向的单位向量是故选:A【点睛】本题考查的是向量的坐标运算,属于基础题6、D【解析】
由正弦定理,可得,即可求解的大小,得到答案.【详解】在中,因为,由正弦定理,可得,又由,且,所以或,故选D.【点睛】本题主要考查了正弦定理的应用,其中解答中熟练利用正弦定理,求得的值是解答的关键,着重考查了推理与运算能力,属于基础题.7、B【解析】
先求出的坐标,再由向量共线,列出方程,即可得出结果.【详解】因为向量,,所以,又,所以,解得.故选B【点睛】本题主要考查由向量共线求参数的问题,熟记向量的坐标运算即可,属于常考题型.8、D【解析】
函数可以化为,设,由,则,即转化为求二次函数在上的最大值.【详解】由设,由,则.即求二次函数在上的最大值所以当,即时,函数取得最大值.故选:D【点睛】本题考查的二次型函数的最值,属于中档题.9、D【解析】由结合题意可得:,故,△ABC为锐角三角形,则,由题意结合三角函数的性质有:,则:,即:,则,由正弦定理有:,故.本题选择D选项.点睛:在解决三角形问题中,求解角度值一般应用余弦定理,因为余弦定理在内具有单调性,求解面积常用面积公式,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.10、A【解析】
逐个选项进行判断即可.【详解】A选项,因为,所以.当时即不满足选项B,C,D.故选A.【点睛】此题考查不等式的基本性质,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①③④⑤【解析】
设出几何体的边长,根据正六边形的性质,线面垂直的判定定理,线面平行的判定定理,面面垂直的判定定理,异面直线所成角,线面角有关知识,对五个结论逐一分析,由此得出正确结论的序号.【详解】设正六边形长为,则.根据正六边形的几何性质可知,由平面得,所以平面,所以,故①正确.由于,而,所以直线平面不正确,故②错误.易证得,所以平面,所以平面平面,故③正确.由于,所以是异面直线与所成角,在中,,故,也即异面直线与所成角为,故④正确.连接,则,由①证明过程可知平面,所以平面,所以是所求线面角,在三角形中,,由余弦定理得,故⑤正确.综上所述,正确的序号为①③④⑤.【点睛】本小题主要考查线面垂直的判定,面面垂直的判定,考查线线角、线面角的求法,属于中档题.12、【解析】
设直线的截距式方程为,利用该直线过可得,再利用基本不等式可求何时即取最小值,从而得到相应的直线方程.【详解】设直线的截距式方程为,其中且.因为直线过,故.所以,由基本不等式可知,当且仅当时等号成立,故当取最小值时,直线方程为:.填.【点睛】直线方程有五种形式,常用的形式有点斜式、斜截式、截距式、一般式,垂直于的轴的直线没有点斜式、斜截式和截距式,垂直于轴的直线没有截距式,注意根据题设所给的条件选择合适的方程的形式,特别地,如果考虑的问题是与直线、坐标轴围成的直角三角形有关的问题,可考虑利用截距式.13、1【解析】
根据等比数列前项和公式,由可得,通过化简可得,代入的值即可得结果.【详解】∵,∴,显然,∴,∴,∴,∴,故答案为1.【点睛】本题主要考查等比数列的前项和公式,本题解题的关键是看出数列的公比的值,属于基础题.14、(0,1)【解析】
画出函数f(x)在x∈0,2【详解】解:画出函数y=cosx+2|cosx|=3cos以及直线y=k的图象,如图所示;由f(x)的图象与直线y=k有且仅有四个不同的交点,可得0<k<1.故答案为:(0,1).【点睛】本题主要考查利用分段函数及三角函数的性质求参数,数形结合是解题的关键.15、12【解析】
直接根据圆柱的侧面展开图的面积和圆柱侧面积的关系计算得解.【详解】因为圆柱的侧面展开图的面积和圆柱侧面积相等,所以此圆柱的侧面积为.故答案为:12【点睛】本题主要考查圆柱的侧面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.16、【解析】
由初中部、高中部男女比例的饼图,初中部女老师占70%,高中部女老师占40%,分别算出女老师人数,再相加.【详解】初中部女老师占70%,高中部女老师占40%,该校女教师的人数为.【点睛】考查统计中读图能力,从图中提取基本信息的基本能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】
(1)先求出周期得,由最高点坐标可求得,然后由正弦函数的单调性得结论;(2)由直线与的图象交点的对称性可得.【详解】(1)由题意,∴,又,,,由得,∴,令得,∴单调减区间是,;(2)在含有三个周期,如图,的图象与在上有六个交点,前面两个交点关于直线对称,中间两个关于直线对称,最后两个关于直线对称,∴所求六个根的和为.【点睛】本题考查由三角函数的性质求解析式,考查函数的单调性,考查函数零点与方程根的分布问题.函数零点与方程根的分布问题可用数形结合思想,把方程的根转化为函数图象与直线交点的横坐标,再利用对称性求解.18、,【解析】
把已知等式两边平方,利用同角三角函数基本关系化简,可得的值,同时由与的值可判断出,,计算出的值,可得的值.【详解】解:,两边同时平方可得:,又,,∴∴,∴【点睛】同时主要考查同角三角函数关系式的应用,相对不难,注意运算的准确性.19、(1)【解析】
(1)利用同角的平方关系求cos(α-β)的值;(2)利用求出,再求的值.【详解】(1)因为,所以cos(α-β).(2)因为cosα=,所以,所以,因为β∈(0,),所以.【点睛】本题主要考查同角的三角函数的关系求值,考查差角的余弦,意在考查学生对这些知识的理解掌握水平,属于基础题.20、(1)证明见解析;定点坐标;(2)【解析】
(1)将整理为:,可得方程组,从而求得定点;(2)直线方程联立求得圆心坐标,将问题转化为求圆心到直线距离的最大值的问题,根据圆的性质可知最大值为,从而求得最小值.【详解】(1)证明:,可化为:令,解得:,直线恒过定点(2)将,联立可得交点坐标设到直线的距离为,则则求的最小值,即求的最大值由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年“新九论”学习心得体会例文(3篇)
- 2025年湖南货运从业资格证新政
- 2025年潍坊b2货运资格证多少道题
- 二零二五版篮球场地租赁及赛事门票销售合同3篇
- 2025版体检服务信息化建设合作合同协议2篇
- 2024跨国公司研发中心合作合同
- 二零二五年度城市综合体消防安全管理代理服务合同3篇
- 二零二五年度合同担保制度标准合同范本汇编3篇
- 2025版天然气发电机组购销合同范本3篇
- 2025年度个人对公司借款及税收优惠合同规范4篇
- 无人化农场项目可行性研究报告
- 《如何存款最合算》课件
- 社区团支部工作计划
- 拖欠工程款上访信范文
- 2024届上海市金山区高三下学期二模英语试题(原卷版)
- 《wifi协议文库》课件
- 《好东西》:女作者电影的话语建构与乌托邦想象
- 一年级下册数学口算题卡打印
- 2024年中科院心理咨询师新教材各单元考试题库大全-下(多选题部分)
- 真人cs基于信号发射的激光武器设计
- 2024年国信证券招聘笔试参考题库附带答案详解
评论
0/150
提交评论