2024届黑龙江齐齐哈尔市龙江县第二中学高一数学第二学期期末质量检测试题含解析_第1页
2024届黑龙江齐齐哈尔市龙江县第二中学高一数学第二学期期末质量检测试题含解析_第2页
2024届黑龙江齐齐哈尔市龙江县第二中学高一数学第二学期期末质量检测试题含解析_第3页
2024届黑龙江齐齐哈尔市龙江县第二中学高一数学第二学期期末质量检测试题含解析_第4页
2024届黑龙江齐齐哈尔市龙江县第二中学高一数学第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江齐齐哈尔市龙江县第二中学高一数学第二学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示,从气球上测得正前方的河流的两岸,的俯角分别为,,此时气球的高度是60m,则河流的宽度等于()A.m B.m C.m D.m2.已知向量=(),=(-1,1),若,则的值为()A. B. C. D.3.某单位共有老年人180人,中年人540人,青年人a人,为调查身体健康状况,需要从中抽取一个容量为m的样本,用分层抽样方法抽取进行调查,样本中的中年人为6人,则a和m的值不可以是下列四个选项中的哪组()A.a=810,m=17 B.a=450,m=14C.a=720,m=16 D.a=360,m=124.中,角的对边分别为,且,则角()A. B. C. D.5.以分别表示等差数列的前项和,若,则的值为A.7 B. C. D.6.下列三角方程的解集错误的是()A.方程的解集是B.方程的解集是C.方程的解集是D.方程(是锐角)的解集是7.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的是最小的两份之和,则最小的一份的量是()A. B. C. D.8.在△ABC中,角所对的边分别为,且则最大角为()A. B. C. D.9.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的()A.倍 B.2倍 C.倍 D.倍10.某三棱锥的左视图、俯视图如图所示,则该三棱锥的体积是()A.3 B.2 C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.若把写成的形式,则______.12.如图所示,分别以为圆心,在内作半径为2的三个扇形,在内任取一点,如果点落在这三个扇形内的概率为,那么图中阴影部分的面积是____________.13.如果奇函数f(x)在[3,7]上是增函数且最小值是5,那么f(x)在[-7,-3]上是_________.①减函数且最小值是-5;②减函数且最大值是-5;③增函数且最小值是-5;④增函数且最大值是-514.在等比数列{an}中,a115.函数的最小正周期是________.16.已知,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足:,(1)求,的值;(2)求数列的通项公式;(3)设,数列的前n项和,求证:18.如图,在三棱锥中,平面平面,,点,,分别为线段,,的中点,点是线段的中点.求证:(1)平面;(2).19.在平面直角坐标系中,的顶点、,边上的高线所在的直线方程为,边上的中线所在的直线方程为.(1)求点B到直线的距离;(2)求的面积.20.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,且∠BAP=∠CDP=90°(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=AD,且四棱锥的侧面积为6+2,求四校锥P﹣ABCD的体积.21.已知向量,.(I)若,共线,求的值.(II)若,求的值;(III)当时,求与夹角的余弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

在直角三角形中,利用锐角三角函数求出的长,在直角三角形中,利用锐角三角函数求出的长,最后利用进行求解即可.【详解】在直角三角形中,.在直角三角形中,.所以有.故选:A【点睛】本题考查了锐角三角函数的应用,考查了数学运算能力.2、D【解析】

对条件两边平方,得到该两个向量分别垂直,代入点的坐标,计算参数,即可.【详解】结合条件可知,,得到,代入坐标,得到,解得,故选D.【点睛】本道题考查了向量的运算,考查了向量垂直坐标表示,难度中等.3、B【解析】

根据分层抽样的规律,计算a和m的关系为:8+a【详解】某单位共有老年人180人,中年人540人,青年人a人,样本中的中年人为6人,则老年人为:180×6540=22+6+代入选项计算,B不符合故答案为B【点睛】本题考查了分层抽样,意在考查学生的计算能力.4、B【解析】

根据题意结合正弦定理,由题,可得三角形为等边三角形,即可得解.【详解】由题:即,中,由正弦定理可得:,即,两边同时平方:,由题,所以,即,所以,即为等边三角形,所以.故选:B【点睛】此题考查利用正弦定理进行边角互化,根据边的关系判断三角形的形状,求出三角形的内角.5、B【解析】

根据等差数列前n项和的性质,当n为奇数时,,即可把转化为求解.【详解】因为数列是等差数列,所以,故,选B.【点睛】本题主要考查了等差数列前n项和的性质,属于中档题.6、B【解析】

根据余弦函数的性质可判断B是错误的.【详解】因为,故无解,故B错.对于A,的解集为,故A正确.对于C,的解集是,故C正确.对于D,,.因为为锐角,,所以或或,所以或或,故D正确.故选:B.【点睛】本题考查三角方程的解,注意对于三角方程,我们需掌握有解的条件和其通解公式,而给定范围上的解,需结合整体的范围来讨论,本题属于基础题.7、D【解析】

由题意可得中间部分的为20个面包,设最小的一份为,公差为,可得到和的方程,即可求解.【详解】由题意可得中间的那份为20个面包,设最小的一份为,公差为,由题意可得,解得,故选D.【点睛】本题主要考查了等差数列的通项公式及其应用,其中根据题意设最小的一份为,公差为,列出关于和的方程是解答的关键,着重考查了推理与运算能力,属于基础题.8、C【解析】

根据正弦定理可得三边的比例关系;由大边对大角可知最大,利用余弦定理求得余弦值,从而求得角的大小.【详解】由正弦定理可得:设,,最大为最大角本题正确选项:【点睛】本题考查正弦定理、余弦定理的应用,涉及到三角形中大边对大角的关系,属于基础题.9、C【解析】

以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法看三角形底边长和高的变化即可.【详解】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法知,三角形的底长度不变,高所在的直线为y′轴,长度减半,故三家性的高变为原来的sin45°=,故直观图中三角形面积是原三角形面积的.故选C.【点睛】本题重点考查了斜二侧画法、平面图形的面积的求解方法等知识,属于中档题.解题关键是准确理解斜二侧画法的内涵,与x轴平行的线段长度保持不变,与y轴平行的线段的长度减少为原来的一半.10、D【解析】

根据三视图高平齐的原则得知锥体的高,结合俯视图可计算出底面面积,再利用锥体体积公式可得出答案.【详解】由三视图“高平齐”的原则可知该三棱锥的高为,俯视图的面积为锥体底面面积,则该三棱锥的底面面积为,因此,该三棱锥的体积为,故选D.【点睛】本题考查利用三视图求几何体的体积,解题时充分利用三视图“长对正,高平齐,宽相等”的原则得出几何体的某些数据,并判断出几何体的形状,结合相关公式进行计算,考查空间想象能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

将角度化成弧度,再用象限角的表示方法求解即可.【详解】解:.故答案为:.【点睛】本题考查弧度与角度的互化,象限角的表示,属于基础题.12、【解析】

先求出三块扇形的面积,再由概率计算公式求出的面积,进而求出阴影部分的面积.【详解】∵,∴三块扇形的面积为:,设的面积为,∵在内任取一点,点落在这三个扇形内的概率为,,∴图中阴影部分的面积为:,故答案为:.【点睛】本题主要考查几何概型的应用,属于几何概型中的面积问题,难度不大.13、④【解析】

由题意结合奇函数的对称性和所给函数的性质即可求得最终结果.【详解】奇函数的函数图象关于坐标原点中心对称,则若奇函数f(x)在区间[3,7]上是增函数且最小值为1,那么f(x)在区间[﹣7,﹣3]上是增函数且最大值为﹣1.故答案为:④.【点睛】本题考查了奇函数的性质,函数的对称性及其应用等,重点考查学生对基础概念的理解和计算能力,属于中等题.14、64【解析】由题设可得q3=8⇒q=3,则a715、【解析】

根据函数的周期公式计算即可.【详解】函数的最小正周期是.故答案为【点睛】本题主要考查了正切函数周期公式的应用,属于基础题.16、【解析】

利用同角三角函数的基本关系将弦化切,再代入计算可得.【详解】解:,故答案为:【点睛】本题考查同角三角函数的基本关系,齐次式的计算,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);;(2)(3)见证明;【解析】

(1)令可求得;(2)在已知等式基础上,用代得另一等式,然后相减,可求得,并检验一下是否适合此表达式;(3)用裂项相消法求和.【详解】解:(1)由已知得,∴(2)由,①得时,,②①-②得∴,也适合此式,∴().(3)由(2)得,∴∴∵,∴∴【点睛】本题考查由数列的通项公式,考查裂项相消法求和.求通项公式时的方法与已知求的方法一样,本题就相当于已知数列的前项和,要求.注意首项求法的区别.18、(1)见解析;(2)见解析【解析】

(1)连AF交BE于Q,连QO,推导出Q是△PAB的重心,从而FG∥QO,由此能证明FG∥平面EBO.(2)推导出BO⊥AC,从而BO⊥面PAC,进而BO⊥PA,再求出OE⊥PA,由此能证明PA⊥平面EBO,利用线面垂直的性质可证PA⊥BE.【详解】(1)连接AF交BE于Q,连接QO,因为E,F分别为边PA,PB的中点,所以Q为△PAB的重心,可得:2,又因为O为线段AC的中点,G是线段CO的中点,所以2,于是,所以FG∥QO,因为FG⊄平面EBO,QO⊂平面EBO,所以FG∥平面EBO.(2)因为O为边AC的中点,AB=BC,所以BO⊥AC,因为平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,BO⊂平面ABC,所以BO⊥平面PAC,因为PA⊂平面PAC,所以BO⊥PA,因为点E,O分别为线段PA,AC的中点,所以EO∥PC,因为PA⊥PC,所以PA⊥EO,又BO∩OE=O,BO,EO⊂平面EBO,所以PA⊥平面EBO,因为BE⊂平面EBO,所以PA⊥BE.【点睛】本题考查线面垂直、线面平行的证明,考查空间中线线、线面、面面间的关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.19、(1)(2)【解析】

(1)由题意求得所在直线的斜率再由直线方程点斜式求的方程,然后利用点到直线的距离公式求解;(2)设的坐标,由题意列式求得的坐标,再求出,代入三角形面积公式求解.【详解】(1)由题意,,直线的方程为,即.点到直线的距离;(2)设,则的中点坐标为,则,解得,即,.的面积.【点睛】本题考查点到直线的距离公式的应用,考查点关于直线的对称点的求法,是基础题.20、(1)见解析;(2)【解析】

(1)只需证明平面,,即可得平面平面平面;(2)设,则,由四棱锥的侧面积,取得,在平面内作,垂足为.可得平面且,即可求四棱锥的体积.【详解】(1)由已知,得,,由于,故,从而平面,又平面,所以平面平面.(2)设,则,所以,从而,也为等腰直角三角形,为正三角形,于是四棱锥的侧面积,解得,在平面内作,垂足为,由(1)知,平面,故,可得平面且,故四棱锥的体积.【点睛】本题考查了面面垂直的判定与证明,以及四棱锥的体积的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论