版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省嵊州市高级中学2024届高一下数学期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过点且与圆相切的直线方程为()A. B.或C.或 D.或2.设是两条不同的直线,是两个不同的平面,则下列叙述正确的是()①若,则;②若,则;③若,则;④若,则.A.①② B.③④ C.①③ D.②④3.在中,已知,则等于()A. B.C.或 D.或4.已知函数,下列结论错误的是()A.既不是奇函数也不是偶函数 B.在上恰有一个零点C.是周期函数 D.在上是增函数5.若a,b,c∈R,且满足a>b>c,则下列不等式成立的是()A.1a<C.ac26.已知等比数列的公比为正数,且,则()A. B. C. D.7.已知扇形的半径为,圆心角为,则该扇形的面积为()A. B. C. D.8.已知直线l和平面,若直线l在空间中任意放置,则在平面内总有直线和A.垂直 B.平行 C.异面 D.相交9.某几何体的三视图如图所示,则它的体积是()A.B.C.D.10.设向量,,若三点共线,则()A. B. C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.在中,角A,B,C所对的边分别为a,b,c,,的平分线交AC于点D,且,则的最小值为________.12.给出下列四个命题:①在中,若,则;②已知点,则函数的图象上存在一点,使得;③函数是周期函数,且周期与有关,与无关;④设方程的解是,方程的解是,则.其中真命题的序号是______.(把你认为是真命题的序号都填上)13.已知函数y=sin(x+)(>0,-<)的图象如图所示,则=________________.14.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件,为了了解它们的产品质量是否存在显著差异,用分层抽样的方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=.15.函数的单调增区间是________.16.已知不等式的解集为,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某制造商3月生产了一批乒乓球,从中随机抽样133个进行检查,测得每个球的直径(单位:mm),将数据分组如下:分组
频数
频率
[1.95,1.97)
13
[1.97,1.99)
23
[1.99,2.31)
53
[2.31,2.33]
23
合计
133
(Ⅰ)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图;(Ⅱ)若以上述频率作为概率,已知标准乒乓球的直径为2.33mm,试求这批球的直径误差不超过3.33mm的概率;(Ⅲ)统计方法中,同一组数据经常用该组区间的中点值(例如区间[1.99,2.31)的中点值是2.33作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).18.某小型企业甲产品生产的投入成本x(单位:万元)与产品销售收入y(单位:万元)存在较好的线性关系,下表记录了最近5次该产品的相关数据.x(万元)357911y(万元)810131722(1)求y关于x的线性回归方程;(2)根据(1)中的回归方程,判断该企业甲产品投入成本12万元的毛利率更大还是投入成本15万元的毛利率更大(毛利率)?相关公式:,.19.如果数列对任意的满足:,则称数列为“数列”.(1)已知数列是“数列”,设,求证:数列是递增数列,并指出与的大小关系(不需要证明);(2)已知数列是首项为,公差为的等差数列,是其前项的和,若数列是“数列”,求的取值范围;(3)已知数列是各项均为正数的“数列”,对于取相同的正整数时,比较和的大小,并说明理由.20.已知数列的前项和为,且2,,成等差数列.(1)求数列的通项公式;(2)若,求数列的前项和;21.如图,在平面四边形中,为的角平分线,,,.(1)求;(2)若的面积,求的长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
分别考虑斜率存在和不存在两种情况得到答案.【详解】如图所示:当斜率不存在时:当斜率存在时:设故答案选C【点睛】本题考查了圆的切线问题,忽略掉斜率不存在是容易发生的错误.2、D【解析】可以线在平面内,③可以是两相交平面内与交线平行的直线,②对④对,故选D.3、C【解析】在中,已知,由余弦定理,即,解得或,又,或,故选C.4、B【解析】
将函数利用同角三角函数的基本关系,化成,再对选项进行一一验证,即可得答案.【详解】∵,对A,∵,∴既不是奇函数也不是偶函数,故A命题正确;对B,令,解关于的一元二次方程得:,∵,∴方程存在两个根,∴在上有两个零点,故B错误;对C,显然是函数的一个周期,故C正确;对D,令,则,∵在单调递减,且,又∵在单调递减,∴在上是增函数,故D正确;故选:B【点睛】本题考查复合函数的单调性、奇偶性、周期性、零点,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意复合函数周增异减原则.5、C【解析】
通过反例可依次排除A,B,D选项;根据不等式的性质可判断出C正确.【详解】A选项:若a=1,b=-2,则1a>1B选项:若a=1,b=12,则1aC选项:c2+1>0又a>b∴ac2D选项:当c=0时,ac=bc本题正确选项:C【点睛】本题考查不等式性质的应用,解决此类问题通常采用排除法,利用反例来排除错误选项即可,属于基础题.6、D【解析】设公比为,由已知得,即,又因为等比数列的公比为正数,所以,故,故选D.7、A【解析】
化圆心角为弧度值,再由扇形面积公式求解即可.【详解】扇形的半径为,圆心角为,即,该扇形的面积为,故选.【点睛】本题主要考查扇形的面积公式的应用.8、A【解析】
本题可以从直线与平面的位置关系入手:直线与平面的位置关系可以分为三种:直线在平面内、直线与平面相交、直线与平面平行,在这三种情况下再讨论平面中的直线与已知直线的关系,通过比较可知:每种情况都有可能垂直.【详解】当直线l与平面相交时,平面内的任意一条直线与直线l的关系只有两种:异面、相交,此时就不可能平行了,故B错.当直线l与平面平行时,平面内的任意一条直线与直线l的关系只有两种:异面、平行,此时就不可能相交了,故D错.当直线a在平面内时,平面内的任意一条直线与直线l的关系只有两种:平行、相交,此时就不可能异面了,故C错.不管直线l与平面的位置关系相交、平行,还是在平面内,都可以在平面内找到一条直线与直线垂直,因为直线在异面与相交时都包括垂直的情况,故A正确.故选:A.【点睛】本题主要考查了空间中直线与直线之间的位置关系,空间中直线与平面之间的位置关系,考查空间想象能力和思维能力.9、A【解析】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积公式进行计算.由几何体的三视图可知几何体为一个组合体,即一个正方体中间去掉一个圆锥体,所以它的体积是.10、A【解析】
利用向量共线的坐标表示可得,解方程即可.【详解】三点共线,,又,,,解得.故选:A【点睛】本题考查了向量共线的坐标表示,需掌握向量共线,坐标满足:,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、32【解析】
根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可.【详解】如图所示,则△ABC的面积为,即ac=2a+2c,得,得,当且仅当,即3c=a时取等号;∴的最小值为32.故答案为:32.【点睛】本题考查三角形中的几何计算,属于中等题.12、①③【解析】
①利用三角形的内角和定理以及正弦函数的单调性进行判断;②根据余弦函数的有界性可进行判断;③利用周期函数的定义,结合余弦函数的周期性进行判断;④根据互为反函数图象的对称性进行判断.【详解】①在中,若,则,则,由于正弦函数在区间上为增函数,所以,故命题①正确;②已知点,则函数,所以该函数图象上不存在一点,使得,故命题②错误;③函数的是周期函数,当时,,该函数的周期为.当时,,该函数的周期为.所以,函数的周期与有关,与无关,命题③正确;④设方程的解是,方程的解是,由,可得,由,可得,则可视为函数与直线交点的横坐标,可视为函数与直线交点的横坐标,如下图所示:联立,得,可得点,由于函数的图象与函数的图象关于直线对称,则直线与函数和函数图象的两个交点关于点对称,所以,命题④错误.故答案为:①③.【点睛】本题考查三角函数的周期、正弦函数单调性的应用、互为反函数图象的对称性的应用以及余弦函数有界性的应用,考查分析问题和解决问题的能力,属于中等题.13、【解析】
由图可知,14、13【解析】(解法1)由分层抽样得,解得n=13.(解法2)从甲乙丙三个车间依次抽取a,b,c个样本,则120∶80∶60=a∶b∶3a=6,b=4,所以n=a+b+c=13.15、,【解析】
先利用诱导公式化简,即可由正弦函数的单调性求出。【详解】因为,所以的单调增区间是,。【点睛】本题主要考查诱导公式以及正弦函数的性质——单调性的应用。16、-7【解析】
结合一元二次不等式和一元二次方程的性质,列出方程组,求得的值,即可得到答案.【详解】由不等式的解集为,可得,解得,所以.故答案为:.【点睛】本题主要考查了一元二次不等式的解法,以及一元二次方程的性质,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析;(Ⅱ)3.9;(Ⅲ)【解析】试题分析:(Ⅰ)根据公式:频率=频数÷样本容量可补充完成频率分布表,然后作出频率分布直方图;(Ⅱ)直径误差不超过3.33mm的频率有3.53,3.53,3.53,所以这批球的直径误差不超过3.33mm的概率3.53+3.53+3.53=3.9;(Ⅲ)由平均值公式可求得试题解析:(Ⅰ)分组
频数
频率
[4.95,4.97)
43
3.43
[4.97,4.99)
53
3.53
[4.99,5.34)
53
3.53
[5.34,5.33]
53
3.53
合计
433
4
(Ⅱ)设误差不超过3.33的事件为,则.(Ⅲ)考点:4.频率分布直方图;5.求数值的平均值18、(1);(2)12万元的毛利率更大【解析】
(1)根据题意代入数值分别算出与即可得解;(2)分别把与代入线性回归方程算出再算出毛利率即可得解.【详解】(1)由题意,.,,,故y关于x的线性回归方程为.(2)当时,,对应的毛利率为,当时,,对应的毛利率为,故投入成本12万元的毛利率更大.【点睛】本题考查了线性回归方程的求解和应用,考查了计算能力,属于基础题.19、(1);(2)(3),证明见解析.【解析】
(1)由新定义,结合单调性的定义可得数列是递增数列;再根据,,可得;(2)运用新定义和等差数列的求和公式,解绝对值不等式即可得到所求范围;(3)对一切,有.运用数学归纳法证明,注意验证成立;假设不等式成立,注意变形和运用新定义,即可得证.【详解】(1)证明:数列是“数列”,可得,即,即,可得数列是递增数列,.(2)数列是“数列”,可得,即,可得,即有,或,或,即或或,所以.(3)数列是各项均为正数的“数列”,对于取相同的正整数时,,运用数学归纳法证明:当时,,,显然即.设时,.即,可得,当时,即证,即证,由,即证即证,由,,,,相加可得,则对一切,有.【点睛】本题考查新定义的理解和运用,考查数列的单调性的证明和等差数列的通项公式和求和公式,以及数学归纳法的应用,考查化简整理的运算能力,属于难题.20、(1);(2)【解析】
(1)利用求解;(2)由(1)知,,差比数列,利用错位相减法求其前n项
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度新能源汽车推广贷款协议4篇
- 二零二五年度名下公司自愿解除劳动合同竞业禁止协议4篇
- 二零二五年度模板木枋行业联盟采购合同3篇
- 二零二五版城市公园改造升级工程合同4篇
- 新春看消费之家电篇:只属于白电的狂欢
- 粘土围堰施工方案
- 2025年绿色能源项目融资合作协议3篇
- 宁国无尘室设计施工方案
- 2025年度个人健身教练服务合同范本7篇
- 2025年度专业摄影车租赁合同模板(简易版)3篇
- 2025年河北供水有限责任公司招聘笔试参考题库含答案解析
- Unit3 Sports and fitness Discovering Useful Structures 说课稿-2024-2025学年高中英语人教版(2019)必修第一册
- 农发行案防知识培训课件
- 社区医疗抗菌药物分级管理方案
- NB/T 11536-2024煤矿带压开采底板井下注浆加固改造技术规范
- 2024年九年级上德育工作总结
- 2024年储罐呼吸阀项目可行性研究报告
- 控制特需医疗服务规模管理措施
- GB/T 45076-2024再生资源交易平台建设规范
- 新加坡SM2数学试题
- 毕业论文-水利水电工程质量管理
评论
0/150
提交评论