2023-2024学年山东省滨州市邹平双语学校三区数学高一下期末综合测试模拟试题含解析_第1页
2023-2024学年山东省滨州市邹平双语学校三区数学高一下期末综合测试模拟试题含解析_第2页
2023-2024学年山东省滨州市邹平双语学校三区数学高一下期末综合测试模拟试题含解析_第3页
2023-2024学年山东省滨州市邹平双语学校三区数学高一下期末综合测试模拟试题含解析_第4页
2023-2024学年山东省滨州市邹平双语学校三区数学高一下期末综合测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年山东省滨州市邹平双语学校三区数学高一下期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角A满足,则的值为()A. B. C. D.2.若,,则的最小值为()A.2 B. C. D.3.在正项等比数列中,,数列的前项之和为()A. B. C. D.4.已知是两条不同的直线,是两个不同的平面,则下列命题正确的是A.,则B.,则C.,则D.,则5.体积为的正方体的顶点都在同一球面上,则该球面的表面积为A. B. C. D.6.已知,,且,则()A.1 B.2 C.3 D.47.如图,网格纸上小正方形的边长为,粗实线画出的是某多面体的三视图,则此几何体的表面积为()A. B. C. D.8.若直线与直线平行,则的值为A. B. C. D.9.设函数,则()A.在单调递增,且其图象关于直线对称B.在单调递增,且其图象关于直线对称C.在单调递减,且其图象关于直线对称D.在单调递增,且其图象关于直线对称10.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是(),为预测人口数,为初期人口数,为预测期内年增长率,为预测期间隔年数.如果在某一时期有,那么在这期间人口数A.呈下降趋势 B.呈上升趋势 C.摆动变化 D.不变二、填空题:本大题共6小题,每小题5分,共30分。11.已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为________.12.已知扇形的圆心角为,半径为,则扇形的面积.13.记,则函数的最小值为__________.14.已知一组数据,,,的方差为,则这组数据,,,的方差为______.15.函数的最小正周期为________.16.函数的反函数为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足:,(1)求,的值;(2)求数列的通项公式;(3)设,数列的前n项和,求证:18.已知数列满足,,设.(1)求,,;(2)证明:数列是等比数列,并求数列和的通项公式.19.已知函数.(1)求函数的最小正周期和值域;(2)设为的三个内角,若,,求的值.20.在中,角的对边分别为,且.(1)求角A的大小;(2)若,求的面积.21.已知,,函数.(1)求函数的最小正周期和单调递减区间;(2)当时,求函数的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

将等式两边平方,利用二倍角公式可得出的值.【详解】,在该等式两边平方得,即,解得,故选A.【点睛】本题考查同角三角函数的基本关系,考查二倍角正弦公式的应用,一般地,解三角函数有关问题时,遇到,常用平方法来求解,考查计算能力,属于中等题.2、D【解析】

根据所给等量关系,用表示出可得.代入中,构造基本不等式即可求得的最小值.【详解】因为,所以变形可得所以由基本不等式可得当且仅当时取等号,解得所以的最小值为故选:D【点睛】本题考查了基本不等式求最值的应用,注意构造合适的基本不等式形式,属于中档题.3、B【解析】

根据等比数列的性质,即可解出答案。【详解】故选B【点睛】本题考查等比数列的性质,同底对数的运算,属于基础题。4、D【解析】

根据空间中直线与平面的位置关系的相关定理依次判断各个选项即可.【详解】两平行平面内的直线的位置关系为:平行或异面,可知错误;且,此时或,可知错误;,,,此时或,可知错误;两平行线中一条垂直于一个平面,则另一条必垂直于该平面,正确.本题正确选项:【点睛】本题考查空间中直线与平面、平面与平面位置关系的判定,考查学生对于定理的掌握程度,属于基础题.5、A【解析】试题分析:因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为,所以正方体的外接球的半径为,所以该球的表面积为,故选A.【考点】正方体的性质,球的表面积【名师点睛】与棱长为的正方体相关的球有三个:外接球、内切球和与各条棱都相切的球,其半径分别为、和.6、D【解析】

根据向量的平行可得4m=3m+4,解得即可.【详解】,,且,则,解得,故选D.【点睛】本题考查了向量平行的充要条件,考查了运算求解能力以及化归与转化思想,属于基础题.7、B【解析】

作出多面体的直观图,将各面的面积相加可得出该多面积的表面积.【详解】由三视图得知该几何体的直观图如下图所示:由直观图可知,底面是边长为的正方形,其面积为;侧面是等腰三角形,且底边长,底边上的高为,其面积为,且;侧面是直角三角形,且为直角,,,其面积为,,的面积为;侧面积为等腰三角形,底边长,,底边上的高为,其面积为.因此,该几何体的表面积为,故选:B.【点睛】本题考查几何体的三视图以及几何体表面积的计算,再利用三视图求几何体的表面积时,要将几何体的直观图还原,并判断出各个面的形状,结合图中数据进行计算,考查空间想象能力与计算能力,属于中等题.8、C【解析】试题分析:由两直线平行可知系数满足考点:两直线平行的判定9、B【解析】

先将函数化简,再根据三角函数的图像性质判断单调性和对称性,从而选择答案.【详解】

根据选项有,当时,在在上单调递增.又即为的对称轴.当时,为的对称轴.故选:B【点睛】本题考查的单调性和对称性质,属于中档题.10、A【解析】

可以通过与之间的大小关系进行判断.【详解】当时,,所以,呈下降趋势.【点睛】判断变化率可以通过比较初始值与变化之后的数值之间的大小来判断.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

求出的垂直平分线方程,两垂直平分线交点为外接圆圆心.再由两点间距离公式计算.【详解】由点B(0,),C(2,),得线段BC的垂直平分线方程为x=1,①由点A(1,0),B(0,),得线段AB的垂直平分线方程为②联立①②,解得△ABC外接圆的圆心坐标为,其到原点的距离为.故答案为:【点睛】本题考查三角形外接圆圆心坐标,外心是三角形三条边的中垂线的交点,到三顶点距离相等.12、【解析】试题分析:由题可知,;考点:扇形面积公式13、4【解析】

利用求解.【详解】,当时,等号成立.故答案为:4【点睛】本题主要考查绝对值不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.14、【解析】

利用方差的性质直接求解.【详解】一组数据,,,的方差为5,这组数据,,,的方差为:.【点睛】本题考查方差的性质应用。若的方差为,则的方差为。15、.【解析】

根据正切型函数的周期公式可计算出函数的最小正周期.【详解】由正切型函数的周期公式得,因此,函数的最小正周期为,故答案为.【点睛】本题考查正切型函数周期的求解,解题的关键在于正切型函数周期公式的应用,考查计算能力,属于基础题.16、【解析】

由原函数的解析式解出自变量x的解析式,再把x和y交换位置,即可得到结果.【详解】解:记∴故反函数为:【点睛】本题考查函数与反函数的定义,求反函数的方法和步骤,注意反函数的定义域是原函数的值域.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);;(2)(3)见证明;【解析】

(1)令可求得;(2)在已知等式基础上,用代得另一等式,然后相减,可求得,并检验一下是否适合此表达式;(3)用裂项相消法求和.【详解】解:(1)由已知得,∴(2)由,①得时,,②①-②得∴,也适合此式,∴().(3)由(2)得,∴∴∵,∴∴【点睛】本题考查由数列的通项公式,考查裂项相消法求和.求通项公式时的方法与已知求的方法一样,本题就相当于已知数列的前项和,要求.注意首项求法的区别.18、(1),,;(2)证明见详解,,.【解析】

(1)根据递推公式,赋值求解即可;(2)利用定义,求证为定值即可,由数列通项公式即可求得和.【详解】(1)由条件可得,将代入得,,而,所以.将代入得,所以.从而,,.(2)由条件可得,即,,又,所以是首项为1,公比为3的等比数列,.因为,所以.【点睛】本题考查利用递推关系求数列某项的值,以及利用数列定义证明等比数列,及求通项公式,是数列综合基础题.19、(1)周期,值域为;(2).【解析】

(1)利用二倍角降幂公式与辅助角公式将函数的解析式进行化简,利用周期公式求出函数的最小正周期,并求出函数的值域;(2)先由的值,求出角的值,然后由结合同角三角函数的基本关系以及两角和的余弦公式求出的值.【详解】(1)∵且,∴所求周期,值域为;(2)∵是的三个内角,,∴∴又,即,又∵,故,故.【点睛】本题考查三角函数与解三角形的综合问题,考查三角函数的基本性质以及三角形中的求值问题,求解三角函数的问题时,要将三角函数解析式进行化简,结合正余弦函数的基本性质求解,考查分析问题的能力和计算能力,属于中等题.20、(1)A=;(2).【解析】

(1)由正弦定理将角关系转化为变关系,再利用余弦定理得到答案.(2)利用余弦定理得到,代入面积公式得到答案.【详解】解:(1)因为所以由正弦定理可得整理可得左右同除以得到,即A=(2)由余弦定理,得,故,所以三角形的面积.【点睛】本题考查了是正弦定理,余弦定理,面积公式,意在考查学生的计算能力.21、(1);.(2).【解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论