山西省岢岚县中学2024年高一数学第二学期期末学业质量监测模拟试题含解析_第1页
山西省岢岚县中学2024年高一数学第二学期期末学业质量监测模拟试题含解析_第2页
山西省岢岚县中学2024年高一数学第二学期期末学业质量监测模拟试题含解析_第3页
山西省岢岚县中学2024年高一数学第二学期期末学业质量监测模拟试题含解析_第4页
山西省岢岚县中学2024年高一数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省岢岚县中学2024年高一数学第二学期期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角,,所对的边分别为,,,若,且,则的面积的最大值为()A. B. C. D.2.过曲线的左焦点且和双曲线实轴垂直的直线与双曲线交于点A,B,若在双曲线的虚轴所在的直线上存在—点C,使得,则双曲线离心率e的最小值为()A. B. C. D.3.《九章算术》中有这样一个问题:今有女子善织,日增等尺,七日织二十八尺,第二日、第五日、第八日所织之和为十五尺,问若聘该女子做工半月(15日),一共能织布几尺()A.75 B.85 C.105 D.1204.已知直线经过两点,则的斜率为()A. B. C. D.5.若角α的终边经过点P(-1,1A.sinα=1C.cosα=26.函数的简图是()A. B. C. D.7.已知函数,将的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变;再把所得图象向上平移个单位长度,得到函数的图象,若,则的值可能为()A. B. C. D.8.一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么这个圆柱的体积与这个球的体积之比为()A.1:3 B.3:1 C.2:3 D.3:29.等差数列,,,则此数列前项和等于().A. B. C. D.10.在△ABC中,内角A,B,C的对边分别是a,b,c,若cosB=,=2,且S△ABC=,则b的值为()A.4 B.3 C.2 D.1二、填空题:本大题共6小题,每小题5分,共30分。11.在边长为2的菱形中,,是对角线与的交点,若点是线段上的动点,且点关于点的对称点为,则的最小值为______.12.已知等差数列中,其前项和为,且,,当取最大值时,的值等于_____.13.圆台两底面半径分别为2cm和5cm,母线长为cm,则它的轴截面的面积是________cm2.14.数列的前项和为,,,则________.15.已知数列满足则的最小值为__________.16.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,.求和的值.18.己知向量,,设函数,且的图象过点和点.(1)当时,求函数的最大值和最小值及相应的的值;(2)将函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数的图象,若在有两个不同的解,求实数的取值范围.19.已知函数的图象与轴正半轴的交点为,.(1)求数列的通项公式;(2)令(为正整数),问是否存在非零整数,使得对任意正整数,都有?若存在,求出的值,若不存在,请说明理由.20.已知向量,.(Ⅰ)求;(Ⅱ)若向量与垂直,求的值.21.设函数和都是定义在集合上的函数,对于任意的,都有成立,称函数与在上互为“互换函数”.(1)函数与在上互为“互换函数”,求集合;(2)若函数(且)与在集合上互为“互换函数”,求证:;(3)函数与在集合且上互为“互换函数”,当时,,且在上是偶函数,求函数在集合上的解析式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由以及,结合二倍角的正切公式,可得,根据三角形的内角的范围可得,由余弦定理以及基本不等式可得,再根据面积公式可得答案.【详解】因为,且,所以,所以,则.由于为定值,由余弦定理得,即.根据基本不等式得,即,当且仅当时,等号成立.所以.故选:A【点睛】本题考查了二倍角的正切公式,考查了余弦定理,考查了基本不等式,考查了三角形的面积公式,属于中档题.2、C【解析】

设双曲线的方程为:,(a>0,b>0),依题意知当点C在坐标原点时,∠ACB最大,∠AOF1≥45°,利用tan∠AOF1,即可求得双曲线离心率e的取值范围.求出最小值.【详解】设双曲线的方程为:,(a>0,b>0),∵双曲线关于x轴对称,且直线AB⊥x轴,设左焦点F1(﹣c,0),则A(﹣c,),B(﹣c,),∵△ABC为直角三角形,依题意知,当点C在坐标原点时,∠ACB最大,∴∠AOF1≥45°,∴tan∠AOF11,整理得:()21≥0,即e2﹣e﹣1≥0,解得:e.即双曲线离心率e的最小值为:.故选:C【点睛】本题考查双曲线的简单性质,分析得到当点C在坐标原点时,∠ACB最大是关键,得到∠AOF1≥45°是突破口,属于中档题.3、D【解析】设第一天织尺,第二天起每天比前一天多织尺,由已知得,,故选D.【方法点睛】本题主要考查等差数列的通项公式、等差数列的前项和公式,属于中档题.等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,另外,解等差数列问题要注意应用等差数列的性质()与前项和的关系.4、A【解析】

直接代入两点的斜率公式,计算即可得出答案。【详解】故选A【点睛】本题考查两点的斜率公式,属于基础题。5、B【解析】

利用三角函数的定义可得α的三个三角函数值后可得正确的选项.【详解】因为角α的终边经过点P-1,1,故r=OP=所以sinα=【点睛】本题考查三角函数的定义,属于基础题.6、D【解析】

变形为,求出周期排除两个选项,再由函数值正负排除一个,最后一个为正确选项.【详解】函数的周期是,排除AB,又时,,排除C.只有D满足.故选:D.【点睛】本题考查由函数解析式选图象,可通过研究函数的性质如单调性、奇偶性、周期性、对称性等排除某些选项,还可求出特殊值,特殊点,函数值的正负,函数值的变化趋势排除一些选项,从而得出正确选项.7、C【解析】

利用二倍角公式与辅助角公式将函数的解析式化简,然后利用图象变换规律得出函数的解析式为,可得函数的值域为,结合条件,可得出、均为函数的最大值,于是得出为函数最小正周期的整数倍,由此可得出正确选项.【详解】函数,将函数的图象上的所有点的横坐标缩短到原来的倍,得的图象;再把所得图象向上平移个单位,得函数的图象,易知函数的值域为.若,则且,均为函数的最大值,由,解得;其中、是三角函数最高点的横坐标,的值为函数的最小正周期的整数倍,且.故选C.【点睛】本题考查三角函数图象变换,同时也考查了正弦型函数与周期相关的问题,解题的关键在于确定、均为函数的最大值,考查分析问题和解决问题的能力,属于中等题.8、D【解析】

设圆柱的底面半径为,利用圆柱侧面积公式与球的表面积公式建立关系式,算出球的半径,再利用圆柱与球的体积公式加以计算,可得所求体积之比.【详解】设圆柱的底面半径为,轴截面正方形边长,则,可得圆柱的侧面积,再设与圆柱表面积相等的球半径为,则球的表面积,解得,因此圆柱的体积为,球的体积为,因此圆柱的体积与球的体积之比为.故选:D.【点睛】本题主要考查了圆柱的侧面积和体积公式,以及球的表面积和体积公式的应用,其中解答中熟记公式,合理计算半径之间的关系是解答的关键,着重考查了推理与运算能力,属于基础题.9、B【解析】由a1+a2+a3=-24,a18+a19+a20=78,得得a1+a20=所以S20=故选D10、C【解析】试题分析:根据正弦定理可得,.在中,,.,,.,.故C正确.考点:1正弦定理;2余弦定理.二、填空题:本大题共6小题,每小题5分,共30分。11、-6【解析】

由题意,然后结合向量共线及数量积运算可得,再将已知条件代入求解即可.【详解】解:菱形的对称性知,在线段上,且,设,则,所以,又因为,当时,取得最小值-6.故答案为:-6.【点睛】本题考查了平面向量的线性运算,重点考查了向量共线及数量积运算,属中档题.12、或【解析】

设等差数列的公差为,由可得出与的等量关系,然后求出的表达式,解不等式,即可得出使得取得最大值的正整数的值.【详解】设等差数列的公差为,由,可得,可得,,令,即,,解得.因此,当或时,取得最大值.故答案为:或.【点睛】本题考查等差数列前项和的最大值的求解,可利用二次函数的基本性质来求,也可以转化为等差数列所有的非负项之和的问题求解,考查化归与转化思想,属于中等题.13、63【解析】

首先画出轴截面,然后结合圆台的性质和轴截面整理计算即可求得最终结果.【详解】画出轴截面,如图,过A作AM⊥BC于M,则BM=5-2=3(cm),AM==9(cm),所以S四边形ABCD==63(cm2).【点睛】本题主要考查圆台的空间结构特征及相关元素的计算等知识,意在考查学生的转化能力和计算求解能力.14、18【解析】

利用,化简得到数列是首项为,公比为的等比数列,利用,即可求解.【详解】,即所以数列是首项为,公比为的等比数列即所以故答案为:【点睛】本题主要考查了与的关系以及等比数列的通项公式,属于基础题.15、【解析】

先利用累加法求出an=1+n2﹣n,所以,设f(n),由此能导出n=5或6时f(n)有最小值.借此能得到的最小值.【详解】解:∵an+1﹣an=2n,∴当n≥2时,an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+1=n2﹣n+1且对n=1也适合,所以an=n2﹣n+1.从而设f(n),令f′(n),则f(n)在上是单调递增,在上是递减的,因为n∈N+,所以当n=5或6时f(n)有最小值.又因为,,所以的最小值为故答案为【点睛】本题考查了利用递推公式求数列的通项公式,考查了累加法.还考查函数的思想,构造函数利用导数判断函数单调性.16、.【解析】

根据棱锥的结构特点,确定所求的圆柱的高和底面半径.【详解】由题意四棱锥的底面是边长为的正方形,侧棱长均为,借助勾股定理,可知四棱锥的高为,.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,圆柱的底面半径为,一个底面的圆心为四棱锥底面的中心,故圆柱的高为,故圆柱的体积为.【点睛】本题主要考查了圆柱与四棱锥的组合,考查了空间想象力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、,【解析】

把已知等式两边平方,利用同角三角函数基本关系化简,可得的值,同时由与的值可判断出,,计算出的值,可得的值.【详解】解:,两边同时平方可得:,又,,∴∴,∴【点睛】同时主要考查同角三角函数关系式的应用,相对不难,注意运算的准确性.18、(1)最大值为2,此时;最小值为-1,此时.(2)【解析】

(1)根据向量数量积坐标公式,列出函数,再根据函数图像过定点,求解函数解析式,当时,解出的范围,根据三角函数性质,可求最值;(2)根据三角函数平移伸缩变换,写出解析式,画出在上的图象,根据图像即可求解参数取值范围.【详解】解:(1)由题意知.根据的图象过点和,得到,解得,.当时,,,最大值为2,此时,最小值为-1,此时.(2)将函数的图象向右平移一个单位得,再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得令,,如图当时,在有两个不同的解∴,即.【点睛】本题考查(1)三角函数最值问题(2)三角函数的平移伸缩变换,考查计算能力,考查转化与化归思想,考查数形结合思想,属于中等题型.19、(1);(2)存在,.【解析】

(1)把点A带入即可(2)根据(1)的计算出、,再解不等式即可【详解】(1)设,得,.所以;(2),若存在,满足恒成立即:,恒成立当为奇数时,当为偶数时,所以,故:.【点睛】本题考查了数列通项的求法,以及不等式恒成立的问题,不等式恒成立是一个难点,也是高考中的常考点,本题属于较难的题。20、(Ⅰ)-1;(Ⅱ)【解析】

(Ⅰ)利用向量的数量积的坐标表示进行计算;(Ⅱ)由垂直关系,得到坐标间的等式关系,然后计算出参数的值.【详解】解:(Ⅰ)因向量,∴,∴(Ⅱ),∵向量与垂直,∴∴,∴【点睛】已知,若,则有;已知,若,则有.21、(1)(2)见解析(3),【解析】

(1)利用列方程,并用二倍角公式进行化简,求得或,进而求得集合.(2)由,得(且),化简后根据的取值范围,求得的取值范围.(3)首先根据为偶函数,求得当时,的解析式,从而求得当时,的解析式.依题意“当,恒成立”,化简得到,根据函数解析式的求法,求得时,以及,进而求得函数在集合上的解析式.【详解】(1)由得化简得,,所以或

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论